2,036 research outputs found

    Neural retina-specific leucine zipper gene NRL (D14S46E) maps to human chromosome 14q11.1-q11.2

    Full text link
    The product of a neural retina-specific gene, NRL, belongs to the "leucine zipper" family of DNA-binding proteins and has a strong similarity to the v-maf oncogene product. The NRL gene maps to human chromosome 14 by Southern blot analysis of genomic DNA from a human-rodent somatic cell hybrid panel. In situ hybridization to metaphase chromosomes has further sublocalized the gene to the region 14q11.1-q11.2. D14S46E has now been assigned to the NRL gene. Because of its specific pattern of expression, NRL is a candidate gene for retinal diseases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29820/1/0000166.pd

    Dinucleotide polymorphism at the DXS1178 locus is tightly linked to PGK1 at Xq13

    Full text link
    A polymorphic CA repeat (locus name DXS1178 ) was isolated from a 1-megabase YAC (OTCC) containing the OTC gene, located at Xp21.1. However, amplification in human-rodent hybrid cells and segregation analysis in three CEPH families mapped the DXS1178 locus at Xq13. The mapping ambiguity is apparently caused by the chimeric nature of the OTCC YAC clone.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47638/1/439_2004_Article_BF00208981.pd

    4.5 years multi-wavelength observations of Mrk 421 during the ARGO-YBJ and Fermi common operation time

    Get PDF
    We report on the extensive multi-wavelength observations of the blazar Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year period of ARGO-YBJ and Fermi common operation time, from August 2008 to February 2013. In particular, thanks to the ARGO-YBJ and Fermi data, the whole energy range from 100 MeV to 10 TeV is covered without any gap. In the observation period, Mrk 421 showed both low and high activity states at all wavebands. The correlations among flux variations in different wavebands were analyzed. Seven large flares, including five X-ray flares and two GeV gamma-ray flares with variable durations (3-58 days), and one X-ray outburst phase were identified and used to investigate the variation of the spectral energy distribution with respect to a relative quiescent phase. During the outburst phase and the seven flaring episodes, the peak energy in X-rays is observed to increase from sub-keV to few keV. The TeV gamma-ray flux increases up to 0.9-7.2 times the flux of the Crab Nebula. The behavior of GeV gamma-rays is found to vary depending on the flare, a feature that leads us to classify flares into three groups according to the GeV flux variation. Finally, the one-zone synchrotron self-Compton model was adopted to describe the emission spectra. Two out of three groups can be satisfactorily described using injected electrons with a power-law spectral index around 2.2, as expected from relativistic diffuse shock acceleration, whereas the remaining group requires a harder injected spectrum. The underlying physical mechanisms responsible for different groups may be related to the acceleration process or to the environment properties.Comment: 17 pages, 9 figures, 5 tables, Accepted for publication in ApJ

    Study of the diffuse gamma-ray emission from the Galactic plane with ARGO-YBJ

    Get PDF
    The events recorded by ARGO-YBJ in more than five years of data collection have been analyzed to determine the diffuse gamma-ray emission in the Galactic plane at Galactic longitudes 25{\deg} < l < 100{\deg} and Galactic latitudes . The energy range covered by this analysis, from ~350 GeV to ~2 TeV, allows the connection of the region explored by Fermi with the multi-TeV measurements carried out by Milagro. Our analysis has been focused on two selected regions of the Galactic plane, i.e., 40{\deg} < l < 100{\deg} and 65{\deg} < l < 85{\deg} (the Cygnus region), where Milagro observed an excess with respect to the predictions of current models. Great care has been taken in order to mask the most intense gamma-ray sources, including the TeV counterpart of the Cygnus cocoon recently identified by ARGO-YBJ, and to remove residual contributions. The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding to the excess found by Milagro, and are consistent with the predictions of the Fermi model for the diffuse Galactic emission. From the measured energy distribution we derive spectral indices and the differential flux at 1 TeV of the diffuse gamma-ray emission in the sky regions investigated.Comment: 11 pages, 6 figures, published in AP

    Search for Gamma-Ray Emission from the Sun during Solar Minimum with the ARGO-YBJ Experiment

    Get PDF
    The hadronic interaction of cosmic rays with solar atmosphere can produce high energy gamma-rays. The gamma-ray luminosity is correlated both with the flux of primary cosmic rays and the intensity of the solar magnetic field. The gamma-rays below 200 GeV have been observed by Fermi without any evident energy cutoff. The bright gamma-ray flux above 100 GeV has been detected only during solar minimum. The only available data in the TeV range come from the HAWC observations, however, outside the solar minimum. The ARGO-YBJ data set has been used to search for sub-TeV/TeV gamma-rays from the Sun during the solar minimum from 2008 to 2010, the same time period covered by the Fermi data. A suitable model containing the Sun shadow, solar disk emission, and inverse-Compton emission has been developed, and the chi-square minimization method was used to quantitatively estimate the disk gamma-ray signal. The result shows that no significant gamma-ray signal is detected and upper limits to the gamma-ray flux at 0.3-7 TeV are set at the 95% confidence level. In the low energy range these limits are consistent with the extrapolation of the Fermi-LAT measurements taken during solar minimum and are compatible with a softening of the gamma-ray spectrum below 1 TeV. They also provide an experimental upper bound to any solar disk emission at TeV energies. Models of dark matter annihilation via long-lived mediators predicting gamma-ray fluxes >10 -7 GeV cm -2 s -1 below 1 TeV are ruled out by the ARGO-YBJ limits

    Search for Gamma-Ray Emission from the Sun during Solar Minimum with the ARGO-YBJ Experiment

    Get PDF
    The hadronic interaction of cosmic rays with solar atmosphere can produce high energy gamma rays. The gamma-ray luminosity is correlated both with the flux of primary cosmic rays and the intensity of the solar magnetic field. The gamma rays below 200 GeV have been observed by FermiFermi without any evident energy cutoff. The bright gamma-ray flux above 100 GeV has been detected only during solar minimum. The only available data in TeV range come from the HAWC observations, however outside the solar minimum. The ARGO-YBJ dataset has been used to search for sub-TeV/TeV gamma rays from the Sun during the solar minimum from 2008 to 2010, the same time period covered by the Fermi data. A suitable model containing the Sun shadow, solar disk emission and inverse-Compton emission has been developed, and the chi-square minimization method was used to quantitatively estimate the disk gamma-ray signal. The result shows that no significant gamma-ray signal is detected and upper limits to the gamma-ray flux at 0.3-7 TeV are set at 95\% confidence level. In the low energy range these limits are consistent with the extrapolation of the Fermi-LAT measurements taken during solar minimum and are compatible with a softening of the gamma-ray spectrum below 1 TeV. They provide also an experimental upper bound to any solar disk emission at TeV energies. Models of dark matter annihilation via long-lived mediators predicting gamma-ray fluxes > 10710^{-7} GeV cm2cm^{-2} s1s^{-1} below 1 TeV are ruled out by the ARGO-YBJ limits

    Search for Gamma Ray Bursts with the ARGO-YBJ Detector in Shower Mode

    Get PDF
    The ARGO-YBJ detector, located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China), was a full coverage air shower array dedicated to gamma ray astronomy and cosmic ray studies. The wide field of view (~ 2 sr) and high duty cycle (> 86%), made ARGO-YBJ suitable to search for short and unexpected gamma ray emissions like gamma ray bursts (GRBs). Between 2007 November 6 and 2013 February 7, 156 satellite-triggered GRBs (24 of them with known redshift) occurred within the ARGO-YBJ field of view. A search for possible emission associated to these GRBs has been made in the two energy ranges 10-100 GeV and 10-1000 GeV. No significant excess has been found in time coincidence with the satellite detections nor in a time window of one hour after the bursts. Taking into account the EBL absorption, upper limits to the energy fluence at 99% of confidence level have been evaluated,with values ranging from ~ 10-5 erg cm-2 to ~10-1 erg cm-2.Comment: 24pages and 12 figure

    CRAB NEBULA: FIVE-YEAR OBSERVATION WITH ARGO-YBJ

    Get PDF
    The ARGO-YBJ air shower detector monitored the Crab Nebula gamma-ray emission from 2007 November to 2013 February. The integrated signal, consisting of similar to 3.3 x 10(5) events, reached the statistical significance of 21.1 standard deviations. The obtained energy spectrum in the energy range 0.3-20 TeV can be described by a power law function dN/dE = I-0 (E/2TeV)(-alpha), with a flux normalization I-0 = (5.2 +/- 0.2) x 10(-12) photons cm(-2) s(-1) TeV (1) and alpha = 2.63 +/- 0.05, corresponding to an integrated flux above 1 TeV of 1.97 x 10(-11) photons cm(-2) s(-1). The systematic error is estimated to be less than 30% for the flux normalization and 0.06 for the spectral index. Assuming a power law spectrum with an exponential cutoff dN/dE = I-0 (E/2 TeV)(-alpha) exp (-E/E-cut), the lower limit of the cutoff energy E-cut is 12 TeV, at 90% confidence level. Our extended data set allows the study of the TeV emission over long timescales. Over five years, the light curve of the Crab Nebula in 200-day bins is compatible with a steady emission with a probability of 7.3 x 10(-2). A correlated analysis with Fermi-LAT data over similar to 4.5 yr using the light curves of the two experiments gives a Pearson correlation coefficient r = 0.56 +/- 0.22. Concerning flux variations on timescales of days, a "blind" search for flares with a duration of 1-15 days gives no excess with a significance higher than four standard deviations. The average rate measured by ARGO-YBJ during the three most powerful flares detected by Fermi-LAT is 205 +/- 91 photons day(-1), consistent with the average value of 137 +/- 10 day(-1)

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
    corecore