398 research outputs found

    THE DISCRIMINATION OF BARBELL WEIGHT FOR WEIGHTLIFTERS

    Get PDF
    Ten college weightlifters were recruited in this study. The standard barbell weight (Ws) of each participant was set at 80% of personal best snatch record. The test barbell weights that include Ws, Ws+-1kg, Ws+-2kg, and Ws+-5kg were given randomly, then each lifter was asked to identify the difference between the test weight and standard weight. The discrimination was over 86% when the test weight was Ws+-5kg. For the test weight equal to the standard weight, the discrimination was significantly less than that of other test weights (p less than 01). Based on the results, the weightlifter seems to have good discrimination in the barbell mass at the difference of 5 kg. It seems that they could not be aware of the slight difference (ex: less than 2kg) of barbell mass by 80% of their best snatch record

    Learning Image Aesthetics by Learning Inpainting

    Get PDF
    Due to the high capability of learning robust features, convolutional neural networks (CNN) are becoming a mainstay solution for many computer vision problems, including aesthetic quality assessment (AQA). However, there remains the issue that learning with CNN requires time-consuming and expensive data annotations especially for a task like AQA. In this paper, we present a novel approach to AQA that incorporates self-supervised learning (SSL) by learning how to inpaint images according to photographic rules such as rules-of-thirds and visual saliency. We conduct extensive quantitative experiments on a variety of pretext tasks and also different ways of masking patches for inpainting, reporting fairer distribution-based metrics. We also show the suitability and practicality of the inpainting task which yielded comparably good benchmark results with much lighter model complexit

    Differential Expression and Functional Analysis of the Tristetraprolin Family during Early Differentiation of 3T3-L1 Preadipocytes

    Get PDF
    The tristetraprolin (TTP) family comprises zinc finger-containing AU-rich element (ARE)-binding proteins consisting of three major members: TTP, ZFP36L1, and ZFP36L2. The present study generated specific antibodies against each TTP member to evaluate its expression during differentiation of 3T3-L1 preadipocytes. In contrast to the inducible expression of TTP, results indicated constitutive expression of ZFP36L1 and ZFP36L2 in 3T3-L1 preadipocytes and their phosphorylation in response to differentiation signals. Physical RNA pull-down and functional luciferase assays revealed that ZFP36L1 and ZFP36L2 bound to the 3′ untranslated region (UTR) of MAPK phosphatase-1 (MKP-1) mRNA and downregulated Mkp-1 3′UTR-mediated luciferase activity. Mkp-1 is an immediate early gene for which the mRNA is transiently expressed in response to differentiation signals. The half-life of Mkp-1 mRNA was longer at 30 min of induction than at 1 h and 2 h of induction. Knockdown of TTP or ZFP36L2 increased the Mkp-1 mRNA half-life at 1 h of induction. Knockdown of ZFP36L1, but not ZFP36L2, increased Mkp-1 mRNA basal levels via mRNA stabilization and downregulated ERK activation. Differentiation induced phosphorylation of ZFP36L1 through ERK and AKT signals. Phosphorylated ZFP36L1 then interacted with 14-3-3, which might decrease its mRNA destabilizing activity. Inhibition of adipogenesis also occurred in ZFP36L1 and TTP knockdown cells. The findings indicate that the differential expression of TTP family members regulates immediate early gene expression and modulates adipogenesis

    Morphology, thermal, and electrical properties of polypropylene hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets

    Full text link
    "This is the peer reviewed version of the following article: Wegrzyn, M., Galindo, B., Benedito, A., & Gimenez, E. (2015). Morphology, thermal, and electrical properties of polypropylene hybrid composites co‐filled with multi‐walled carbon nanotubes and graphene nanoplatelets. Journal of Applied Polymer Science, 132(46)., which has been published in final form at https://doi.org/10.1002/app.42793. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] In this study, nanocomposites of polypropylene (PP) with various loadings of multi-wall carbon nanotubes (MWCNT) and graphene nanoplatelets (GnP) were formed by masterbatch dilution/mixing approach from individual masterbatches PP-MWCNT and PP-GnP. Melt mixing on a twin-screw extruder at two different processing temperatures was followed by characterization of morphology by transmitted-light microscopy including the statistical analysis of agglomeration behavior. The influence of processing temperature and weight fractions of both nanofillers on the dispersion quality is reported. Thermal properties of the nanocomposites investigated by DSC and TGA show sensitivity to the nanofillers weight fraction ratio and to processing conditions. Electrical conductivity is observed to increase up to an order of magnitude with the concentration of each nanofiller increasing from 0.5 wt % to 1.0 wt %. This is related with a decrease of electrical conductivity observed for unequal concentration of both nanofillers. This particular behavior shows the increase of electrical properties for higher MWCNT loadings and the increase of thermo-mechanical properties for higher GnP loadings. (c) 2015 Wiley Periodicals, Inc.This study is funded by the European Community's Seventh Framework Program (FP7-PEOPLE-ITN-2008) within the CONTACT project Marie Curie Fellowship under grant number 238363.Wegrzyn, M.; Galindo-Galiana, B.; Benedito, A.; Giménez Torres, E. (2015). Morphology, thermal, and electrical properties of polypropylene hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets. Journal of Applied Polymer Science. 132(46). https://doi.org/10.1002/app.42793S13246Yang, L., Liu, F., Xia, H., Qian, X., Shen, K., & Zhang, J. (2011). Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon, 49(10), 3274-3283. doi:10.1016/j.carbon.2011.03.054Singh, I. V., Tanaka, M., & Endo, M. (2007). Effect of interface on the thermal conductivity of carbon nanotube composites. International Journal of Thermal Sciences, 46(9), 842-847. doi:10.1016/j.ijthermalsci.2006.11.003Kuan, H.-C., Ma, C.-C. M., Chang, W.-P., Yuen, S.-M., Wu, H.-H., & Lee, T.-M. (2005). Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Composites Science and Technology, 65(11-12), 1703-1710. doi:10.1016/j.compscitech.2005.02.017Arasteh, R., Omidi, M., Rousta, A. H. A., & Kazerooni, H. (2011). A Study on Effect of Waviness on Mechanical Properties of Multi-Walled Carbon Nanotube/Epoxy Composites Using Modified Halpin–Tsai Theory. Journal of Macromolecular Science, Part B, 50(12), 2464-2480. doi:10.1080/00222348.2011.579868Cai, D., Jin, J., Yusoh, K., Rafiq, R., & Song, M. (2012). High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Composites Science and Technology, 72(6), 702-707. doi:10.1016/j.compscitech.2012.01.020Yan, D., Zhang, H.-B., Jia, Y., Hu, J., Qi, X.-Y., Zhang, Z., & Yu, Z.-Z. (2012). Improved Electrical Conductivity of Polyamide 12/Graphene Nanocomposites with Maleated Polyethylene-Octene Rubber Prepared by Melt Compounding. ACS Applied Materials & Interfaces, 4(9), 4740-4745. doi:10.1021/am301119bHaslam, M. D., & Raeymaekers, B. (2013). A composite index to quantify dispersion of carbon nanotubes in polymer-based composite materials. Composites Part B: Engineering, 55, 16-21. doi:10.1016/j.compositesb.2013.05.038Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., & Lee, J. H. (2010). Recent advances in graphene based polymer composites. Progress in Polymer Science, 35(11), 1350-1375. doi:10.1016/j.progpolymsci.2010.07.005Pötschke, P., Dudkin, S. M., & Alig, I. (2003). Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer, 44(17), 5023-5030. doi:10.1016/s0032-3861(03)00451-8Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969Sathyanarayana, S., Olowojoba, G., Weiss, P., Caglar, B., Pataki, B., Mikonsaari, I., … Henning, F. (2012). Compounding of MWCNTs with PS in a Twin-Screw Extruder with Varying Process Parameters: Morphology, Interfacial Behavior, Thermal Stability, Rheology, and Volume Resistivity. Macromolecular Materials and Engineering, 298(1), 89-105. doi:10.1002/mame.201200018Vega, J. F., Martínez-Salazar, J., Trujillo, M., Arnal, M. L., Müller, A. J., Bredeau, S., & Dubois, P. (2009). Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules, 42(13), 4719-4727. doi:10.1021/ma900645fAlig, I., Lellinger, D., Dudkin, S. M., & Pötschke, P. (2007). Conductivity spectroscopy on melt processed polypropylene–multiwalled carbon nanotube composites: Recovery after shear and crystallization. Polymer, 48(4), 1020-1029. doi:10.1016/j.polymer.2006.12.035Chaharmahali, M., Hamzeh, Y., Ebrahimi, G., Ashori, A., & Ghasemi, I. (2013). Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polymer Bulletin, 71(2), 337-349. doi:10.1007/s00289-013-1064-3Hill, D. E., Lin, Y., Rao, A. M., Allard, L. F., & Sun, Y.-P. (2002). Functionalization of Carbon Nanotubes with Polystyrene. Macromolecules, 35(25), 9466-9471. doi:10.1021/ma020855rYu, Y.-H., Lin, Y.-Y., Lin, C.-H., Chan, C.-C., & Huang, Y.-C. (2014). High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polym. Chem., 5(2), 535-550. doi:10.1039/c3py00825hZhang, S., Yin, S., Rong, C., Huo, P., Jiang, Z., & Wang, G. (2013). Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly(ether sulfone) composites. European Polymer Journal, 49(10), 3125-3134. doi:10.1016/j.eurpolymj.2013.07.011Huang, G., Wang, S., Song, P., Wu, C., Chen, S., & Wang, X. (2014). Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Composites Part A: Applied Science and Manufacturing, 59, 18-25. doi:10.1016/j.compositesa.2013.12.010Chatterjee, S., Nafezarefi, F., Tai, N. H., Schlagenhauf, L., Nüesch, F. A., & Chu, B. T. T. (2012). Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon, 50(15), 5380-5386. doi:10.1016/j.carbon.2012.07.021Im, H., & Kim, J. (2012). Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon, 50(15), 5429-5440. doi:10.1016/j.carbon.2012.07.029Jiang, X., & Drzal, L. T. (2011). Improving electrical conductivity and mechanical properties of high density polyethylene through incorporation of paraffin wax coated exfoliated graphene nanoplatelets and multi-wall carbon nano-tubes. Composites Part A: Applied Science and Manufacturing, 42(11), 1840-1849. doi:10.1016/j.compositesa.2011.08.011Hwang, S.-H., Park, H. W., Park, Y.-B., Um, M.-K., Byun, J.-H., & Kwon, S. (2013). Electromechanical strain sensing using polycarbonate-impregnated carbon nanotube–graphene nanoplatelet hybrid composite sheets. Composites Science and Technology, 89, 1-9. doi:10.1016/j.compscitech.2013.09.005Chatterjee, S., Nüesch, F. A., & Chu, B. T. T. (2013). Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers. Chemical Physics Letters, 557, 92-96. doi:10.1016/j.cplett.2012.11.091Lahiri, D., Hec, F., Thiesse, M., Durygin, A., Zhang, C., & Agarwal, A. (2014). Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites. Tribology International, 70, 165-169. doi:10.1016/j.triboint.2013.10.012Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33(12), 1119-1198. doi:10.1016/j.progpolymsci.2008.07.008Wegrzyn, M., Juan, S., Benedito, A., & Giménez, E. (2013). The influence of injection molding parameters on electrical properties of PC/ABS-MWCNT nanocomposites. Journal of Applied Polymer Science, 130(3), 2152-2158. doi:10.1002/app.39412Pegel , S. Villmow , T. Pötschke , P. In Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications McNally , T. Pötschke , P. Woodhead Publishing Cambridge 2011Zhang, R., Moon, K., Lin, W., & Wong, C. P. (2010). Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles. Journal of Materials Chemistry, 20(10), 2018. doi:10.1039/b921072eGrossiord, N., Kivit, P. J. J., Loos, J., Meuldijk, J., Kyrylyuk, A. V., van der Schoot, P., & Koning, C. E. (2008). On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites. Polymer, 49(12), 2866-2872. doi:10.1016/j.polymer.2008.04.03

    Metabolic syndrome and abdominal fat are associated with inflammation, but not with clinical outcomes, in peritoneal dialysis patients

    Get PDF
    BACKGROUND: In the general population, metabolic syndrome (MetS) is correlated with visceral fat and a risk factor for cardiovascular disease (CVD); however, little is known about the significance of abdominal fat and its association with inflammation and medication use in peritoneal dialysis (PD) patients. We investigated the relationship of visceral fat area (VFA) with C-reactive protein (CRP) levels and medication use in PD patients and followed their clinical outcomes. METHODS: In a prospective study from February 2009 to February 2012, we assessed diabetes mellitus (DM) status, clinical and PD-associated characteristics, medication use, CRP levels, components of MetS, and VFA in 183 PD patients. These patients were categorized into 3 groups based on MetS and DM status: non-MetS (group 1, n = 73), MetS (group 2, n = 65), and DM (group 3, n = 45). VFA was evaluated by computed tomography (CT) and corrected for body mass index (BMI). RESULTS: Patients in group 1 had smaller VFAs than patients in groups 2 and 3 (3.2 ± 1.8, 4.6 ± 1.9, and 4.9 ± 2.0 cm(2)/[kg/m(2)], respectively, P < 0.05) and lower CRP levels (0.97 ± 2.31, 1.27 ± 2.57, and 1.11 ± 1.35 mg/dL, respectively, P < 0.05). VFA increased with the number of criteria met for MetS. After adjusting for age, body weight, and sex, CRP and albumin levels functioned as independent positive predictors of VFA; on other hand, the use of renin-angiotensin system blockers was inversely correlated with VFA in PD patients without DM. In the survival analysis, DM patients (group 3) had the poorest survival among the 3 groups, but no significant differences were found between groups 1 and 2. CONCLUSION: This study showed that VFA and MetS are associated with CRP levels but cannot predict survival in PD patients without DM. The complex relationship of nutritional parameters to VFA and MetS may explain these results. The type of antihypertensive medication used was also associated with the VFA. The mechanisms behind these findings warrant further investigation

    Novel Ultrasonographic Fatty Liver Indicator Can Predict Hepatitis in Children With Non-alcoholic Fatty Liver Disease

    Get PDF
    Background: Childhood non-alcoholic fatty liver disease (NAFLD) is a public health issue worldwide. To date, liver biopsy remains the gold standard for diagnosing the severity of NAFLD. However, this invasive procedure might contribute to complications. Owing to this reason, a good non-invasive tool to estimate NAFLD in children is urgently needed. We sought to investigate whether a non-invasive semi-quantitative ultrasonographic fatty liver indicator (US-FLI) can estimate NAFLD in children.Methods: Children aged between 10 and 18 years were enrolled prospectively. Abdominal ultrasonography was performed by a single experienced pediatric gastroenterologist and the non-invasive semi-quantitative US-FLI score were used. Patients were diagnosed with NAFLD if they had a US-FLI score ≥2. The anthropometric measures, obesity-related biochemical results, and levels of tumor necrosis factor-α, interleukin-6, caspase-cleaved cytokeratin fragment of cytokeratin 18 (M30), and adiponectin were also checked.Results: Overall, 117 children aged 10–18 years were enrolled. The anthropometric measures and obesity-related biochemical parameters (hsCRP, triglyceride, uric acid, AST, ALT, γ-GT, homeostatic model assessment insulin resistance (HOMA-IR), and M30) were significantly higher in the obesity group than in the non-obesity group (p &lt; 0.05). Similarly, the US-FLI score was significantly higher in the obesity group than that in the non-obesity group (p &lt; 0.001). Multiple linear regression showed that the US-FLI score was significantly associated with the waist-to-height ratio, uric acid, adiponectin, and M30 levels (all p &lt; 0.05) in children with obesity. The US-FLI score ≥6 was the optimal cut-off point for predicting the hepatitis in children with NAFLD. The area under the receiver operating characteristic curve was 0.710 (95% CI: 0.572–0.847; p = 0.005).Conclusions: The non-invasive US-FLI score can predict hepatitis in children with NAFLD without mandatory liver biopsy. Moreover, the waist-to-height ratio, uric acid, adiponectin, and M30 levels were significantly associated with US-FLI score in children with obesity

    Thermal and electrical conductivity of melt mixed polycarbonate hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets

    Full text link
    "This is the peer reviewed version of the following article: Wegrzyn, M., Ortega, A., Benedito, A., & Gimenez, E. (2015). Thermal and electrical conductivity of melt mixed polycarbonate hybrid composites co&#8208;filled with multi&#8208;walled carbon nanotubes and graphene nanoplatelets. Journal of Applied Polymer Science, 132(37), which has been published in final form at https://doi.org/10.1002/app.42536. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] In this work, we present thermoplastic nanocomposites of polycarbonate (PC) matrix with hybrid nanofillers system formed by a melt-mixing approach. Various concentrations of multi-walled carbon nanotubes (MWCNT) and graphene nanoplatelets (GnP) were mixed in to PC and the melt was homogenized. The nanocomposites were compression molded and characterized by different techniques. Torque dependence on the nanofiller composition increased with the presence of carbon nanotubes. The synergy of carbon nanotubes and GnP showed exponential increase of thermal conductivity, which was compared to logarithmic increase for nanocomposite with no MWCNT. Decrease of Shore A hardness at elevated loads present for all investigated nanocomposites was correlated with the expected low homogeneity caused by a low shear during melt-mixing. Mathematical model was used to calculate elastic modulus from Shore A tests results. Vicat softening temperature (VST) showed opposite pattern for hybrid nanocomposites and for PC-MWCNT increasing in the latter case. Electrical conductivity boost was explained by the collective effect of high nanofiller loads and synergy of MWCNT and GnP. (c) 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42536.This work is funded by the European Community's Seventh Framework Program (FP7-PEOPLE-ITN-2008) within the CONTACT project Marie Curie Fellowship under grant number 238363.Wegrzyn, M.; Ortega, A.; Benedito, A.; Giménez Torres, E. (2015). Thermal and electrical conductivity of melt mixed polycarbonate hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets. Journal of Applied Polymer Science. 132(37):42536-1-42536-8. https://doi.org/10.1002/app.42536S42536-142536-813237Su, D. S., & Schlögl, R. (2010). Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. ChemSusChem, 3(2), 136-168. doi:10.1002/cssc.200900182Yang, L., Liu, F., Xia, H., Qian, X., Shen, K., & Zhang, J. (2011). Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon, 49(10), 3274-3283. doi:10.1016/j.carbon.2011.03.054Singh, I. V., Tanaka, M., & Endo, M. (2007). Effect of interface on the thermal conductivity of carbon nanotube composites. International Journal of Thermal Sciences, 46(9), 842-847. doi:10.1016/j.ijthermalsci.2006.11.003Kuan, H.-C., Ma, C.-C. M., Chang, W.-P., Yuen, S.-M., Wu, H.-H., & Lee, T.-M. (2005). Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Composites Science and Technology, 65(11-12), 1703-1710. doi:10.1016/j.compscitech.2005.02.017Arasteh, R., Omidi, M., Rousta, A. H. A., & Kazerooni, H. (2011). A Study on Effect of Waviness on Mechanical Properties of Multi-Walled Carbon Nanotube/Epoxy Composites Using Modified Halpin–Tsai Theory. Journal of Macromolecular Science, Part B, 50(12), 2464-2480. doi:10.1080/00222348.2011.579868Cai, D., Jin, J., Yusoh, K., Rafiq, R., & Song, M. (2012). High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Composites Science and Technology, 72(6), 702-707. doi:10.1016/j.compscitech.2012.01.020Yu, D., & Dai, L. (2009). Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors. The Journal of Physical Chemistry Letters, 1(2), 467-470. doi:10.1021/jz9003137Haslam, M. D., & Raeymaekers, B. (2013). A composite index to quantify dispersion of carbon nanotubes in polymer-based composite materials. Composites Part B: Engineering, 55, 16-21. doi:10.1016/j.compositesb.2013.05.038Pötschke, P., Dudkin, S. M., & Alig, I. (2003). Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer, 44(17), 5023-5030. doi:10.1016/s0032-3861(03)00451-8Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969Sathyanarayana, S., Olowojoba, G., Weiss, P., Caglar, B., Pataki, B., Mikonsaari, I., … Henning, F. (2012). Compounding of MWCNTs with PS in a Twin-Screw Extruder with Varying Process Parameters: Morphology, Interfacial Behavior, Thermal Stability, Rheology, and Volume Resistivity. Macromolecular Materials and Engineering, 298(1), 89-105. doi:10.1002/mame.201200018Ye, L., Wu, Q., & Qu, B. (2009). Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites. Polymer Degradation and Stability, 94(5), 751-756. doi:10.1016/j.polymdegradstab.2009.02.010Kalaitzidou, K., Fukushima, H., & Drzal, L. T. (2007). Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon, 45(7), 1446-1452. doi:10.1016/j.carbon.2007.03.029Mu, Q., Feng, S., & Diao, G. (2007). Thermal conductivity of silicone rubber filled with ZnO. Polymer Composites, 28(2), 125-130. doi:10.1002/pc.20276Pötschke, P., Bhattacharyya, A. R., & Janke, A. (2004). Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. European Polymer Journal, 40(1), 137-148. doi:10.1016/j.eurpolymj.2003.08.008King, J. A., Barton, R. L., Hauser, R. A., & Keith, J. M. (2008). Synergistic effects of carbon fillers in electrically and thermally conductive liquid crystal polymer based resins. Polymer Composites, 29(4), 421-428. doi:10.1002/pc.20446Hwang, Y., Kim, M., & Kim, J. (2013). Improvement of the mechanical properties and thermal conductivity of poly(ether-ether-ketone) with the addition of graphene oxide-carbon nanotube hybrid fillers. Composites Part A: Applied Science and Manufacturing, 55, 195-202. doi:10.1016/j.compositesa.2013.08.010Babaei, H., Keblinski, P., & Khodadadi, J. M. (2013). Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene. International Journal of Heat and Mass Transfer, 58(1-2), 209-216. doi:10.1016/j.ijheatmasstransfer.2012.11.013Yang, S.-Y., Lin, W.-N., Huang, Y.-L., Tien, H.-W., Wang, J.-Y., Ma, C.-C. M., … Wang, Y.-S. (2011). Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon, 49(3), 793-803. doi:10.1016/j.carbon.2010.10.014Pascual, J., Peris, F., Boronat, T., Fenollar, O., & Balart, R. (2011). Study of the effects of multi-walled carbon nanotubes on mechanical performance and thermal stability of polypropylene. Polymer Engineering & Science, 52(4), 733-740. doi:10.1002/pen.22128Yasin, T., Nisar, M., Shafiq, M., Nho, Y.-C., & Ahmad, R. (2013). Influence of sepiolite and electron beam irradiation on the structural and physicochemical properties of polyethylene/starch nanocomposites. Polymer Composites, 34(3), 408-416. doi:10.1002/pc.22431Zhang, W. D., Shen, L., Phang, I. Y., & Liu, T. (2004). Carbon Nanotubes Reinforced Nylon-6 Composite Prepared by Simple Melt-Compounding. Macromolecules, 37(2), 256-259. doi:10.1021/ma035594fZhang, C., Tjiu, W. W., Liu, T., Lui, W. Y., Phang, I. Y., & Zhang, W.-D. (2011). Dramatically Enhanced Mechanical Performance of Nylon-6 Magnetic Composites with Nanostructured Hybrid One-Dimensional Carbon Nanotube−Two-Dimensional Clay Nanoplatelet Heterostructures. The Journal of Physical Chemistry B, 115(13), 3392-3399. doi:10.1021/jp112284kLin, J., Wang, L., & Chen, G. (2010). Modification of Graphene Platelets and their Tribological Properties as a Lubricant Additive. Tribology Letters, 41(1), 209-215. doi:10.1007/s11249-010-9702-5Qiu, L., Yang, X., Gou, X., Yang, W., Ma, Z.-F., Wallace, G. G., & Li, D. (2010). Dispersing Carbon Nanotubes with Graphene Oxide in Water and Synergistic Effects between Graphene Derivatives. Chemistry - A European Journal, 16(35), 10653-10658. doi:10.1002/chem.201001771Tian, L., Meziani, M. J., Lu, F., Kong, C. Y., Cao, L., Thorne, T. J., & Sun, Y.-P. (2010). Graphene Oxides for Homogeneous Dispersion of Carbon Nanotubes. ACS Applied Materials & Interfaces, 2(11), 3217-3222. doi:10.1021/am100687nPotts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5-25. doi:10.1016/j.polymer.2010.11.042Song, Y. S., & Youn, J. R. (2005). Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon, 43(7), 1378-1385. doi:10.1016/j.carbon.2005.01.007Huang, H., Liu, C. H., Wu, Y., & Fan, S. (2005). Aligned Carbon Nanotube Composite Films for Thermal Management. Advanced Materials, 17(13), 1652-1656. doi:10.1002/adma.200500467Shokrieh, M. M., Hosseinkhani, M. R., Naimi-Jamal, M. R., & Tourani, H. (2013). Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polymer Testing, 32(1), 45-51. doi:10.1016/j.polymertesting.2012.09.001Schiøtz , J. nd Dinesen , A. R. 2001 127Hornbostel, B., Pötschke, P., Kotz, J., & Roth, S. (2008). Mechanical properties of triple composites of polycarbonate, single-walled carbon nanotubes and carbon fibres. Physica E: Low-dimensional Systems and Nanostructures, 40(7), 2434-2439. doi:10.1016/j.physe.2007.08.100Gupta, T. K., Singh, B. P., Mathur, R. B., & Dhakate, S. R. (2014). Multi-walled carbon nanotube–graphene–polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale, 6(2), 842-851. doi:10.1039/c3nr04565jPan, M., Shi, X., Li, X., Hu, H., & Zhang, L. (2004). Morphology and properties of PVC/clay nanocomposites viain situ emulsion polymerization. Journal of Applied Polymer Science, 94(1), 277-286. doi:10.1002/app.20896Wegrzyn, M., Juan, S., Benedito, A., & Giménez, E. (2013). The influence of injection molding parameters on electrical properties of PC/ABS-MWCNT nanocomposites. Journal of Applied Polymer Science, 130(3), 2152-2158. doi:10.1002/app.39412Godavarti, S., & Karwe, M. (1997). Determination of Specific Mechanical Energy Distribution on a Twin-Screw Extruder. Journal of Agricultural Engineering Research, 67(4), 277-287. doi:10.1006/jaer.1997.017

    JNK signalling in cancer: In need of new, smarter therapeutic targets

    Get PDF
    Copyright © 2013 The British Pharmacological Society. This is the accepted version of the following article: Bubici, C. and Papa, S. (2014), JNK signalling in cancer: in need of new, smarter therapeutic targets. British Journal of Pharmacology, 171: 24–37, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/bph.12432/abstract.The JNKs are master protein kinases that regulate many physiological processes, including inflammatory responses, morphogenesis, cell proliferation, differentiation, survival and death. It is increasingly apparent that persistent activation of JNKs is involved in cancer development and progression. Therefore, JNKs represent attractive targets for therapeutic intervention with small molecule kinase inhibitors. However, evidence supportive of a tumour suppressor role for the JNK proteins has also been documented. Recent studies showed that the two major JNK proteins, JNK1 and JNK2, have distinct or even opposing functions in different types of cancer. As such, close consideration of which JNK proteins are beneficial targets and, more importantly, what effect small molecule inhibitors of JNKs have on physiological processes, are essential. A number of ATP-competitive and ATP-non-competitive JNK inhibitors have been developed, but have several limitations such as a lack of specificity and cellular toxicity. In this review, we summarize the accumulating evidence supporting a role for the JNK proteins in the pathogenesis of different solid and haematological malignancies, and discuss many challenges and scientific opportunities in the targeting of JNKs in cancer.Kay Kendall Leukemia Fund, Italian Association for Cancer Research and Foundation for Liver Research
    corecore