147 research outputs found

    Cost and quality issues in establishing hematopoietic cell transplant program in developing countries

    Get PDF
    The hematopoietic cell transplant (HCT) activity has grown significantly over the past two decades in both developing and developed countries. Many challenges arise in establishing new HCT programs in developing countries, due to scarcity of resources and manpower in expertise in HCT. While cost issues can potentially hinder establishment of new HCT programs in certain regions, the focus on quality and value should be included in the general vision of leadership before establishing an HCT program. The main challenge in most developing countries is the lack of trained/qualified personnel, enormous start-up costs for a tertiary care center, and quality maintenance. Herein, we discuss the main challenges from a cost and quality perspective which occur at initiation of a new HCT program. We give real world examples of two developing countries that have recently started new HCT programs despite significant financial constraints. We also portray recommendations from the Worldwide Network of Blood and Marrow Transplantation for levels of requirements for a new HCT program. We hope that this review will serve as a general guide for new transplant program leadership with respect to the concerns of balancing high quality with concurrently lowering costs

    Holographic anatomy of fuzzballs

    Get PDF
    We present a comprehensive analysis of 2-charge fuzzball solutions, that is, horizon-free non-singular solutions of IIB supergravity characterized by a curve on R^4. We propose a precise map that relates any given curve to a specific superposition of R ground states of the D1-D5 system. To test this proposal we compute the holographic 1-point functions associated with these solutions, namely the conserved charges and the vacuum expectation values of chiral primary operators of the boundary theory, and find perfect agreement within the approximations used. In particular, all kinematical constraints are satisfied and the proposal is compatible with dynamical constraints although detailed quantitative tests would require going beyond the leading supergravity approximation. We also discuss which geometries may be dual to a given R ground state. We present the general asymptotic form that such solutions must have and present exact solutions which have such asymptotics and therefore pass all kinematical constraints. Dynamical constraints would again require going beyond the leading supergravity approximation.Comment: 87 pages, begins with 10 page self contained summary of results;v2:JHEP version; v3: typos corrected, see in particular formula D.1

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Observation of a new Xi(b) baryon

    Get PDF
    The first observation of a new b baryon via its strong decay into Xi(b)^- pi^+ (plus charge conjugates) is reported. The measurement uses a data sample of pp collisions at sqrt(s) = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 5.3 inverse femtobarns. The known Xi(b)^- baryon is reconstructed via the decay chain Xi(b)^- to J/psi Xi^- to mu^+ mu^- Lambda^0 pi^-, with Lambda^0 to p pi^-. A peak is observed in the distribution of the difference between the mass of the Xi(b)^- pi^+ system and the sum of the masses of the Xi(b)^- and pi^+, with a significance exceeding five standard deviations. The mass difference of the peak is 14.84 +/- 0.74 (stat.) +/- 0.28 (syst.) MeV. The new state most likely corresponds to the J^P=3/2^+ companion of the Xi(b).Comment: Submitted to Physical Review Letter
    corecore