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Abstract: Hydrogen storage properties of the derivatives of graphene, graphene oxide/reduced-

graphene oxide are studied in this paper. Modified Hummer’s method was adopted for synthesis 

of graphene oxide (GO) and reduced-graphene oxide (rGO). The morphology of GO/rGO was 

examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). 

The presence of C=O and –OH group in the Fourier transform infrared (FTIR) spectrum and G-

mode and 2D-mode in the micro-Raman studies confirmed the synthesis of the GO and rGO. 

Furthermore, the structural investigations using powder x-ray diffraction (XRD) reveals the 

hexagonal crystallographic phase of GO/rGO. The hydrogen storage capacity of the GO/rGO 

sample is measured using indigenously fabricated high pressure hydrogen storage Sieverts’ type 

volumetric setup at room temperature and pressure up to 80 bars. In present experimental 

investigations, GO was found to exhibit better H2 uptake capacity (1.90wt. %) as compared to 

rGO (1.34 wt. %) at room temperature. It can be said that the oxygen functional groups work as 

spacers in between the graphene layers and increase the inter-layer space which in turn 

accumulate more number of hydrogen molecules on surface of carbon nano-sheets. 
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1. INTRODUCTION  

The air pollution and toxic emissions play key role in controlling global temperature which leads 

to category 4 and 5 hurricanes in the Atlantic Ocean [1]. In this context, pollution and climate 

change induced by the combustion products of currently used fuels add urgency for the 

development of environmentally clean fuels. Among all kinds of energy sources, hydrogen is 

found to be best choice as a clean fuel. It is a renewal, environment friendly, efficient, long life 

with less maintenance, and no greenhouse gas emission [2]. It also possesses unique qualities of 

being light weight, nontoxic and most abundant element in the universe. However, hydrogen 

doesn't occur naturally as a gas on the earth, and readily combines with other elements like 

water, hydrocarbon etc. Therefore, utilization of molecular hydrogen as energy carrier, its 

production, storage, and detection is necessary[3]. 

Presently, hydrogen is stored in three ways namely (a) high pressure, (b)cryogenic,(c) solid state 

hydrogen storage [4]. The high pressure hydrogen storage is an energy consuming process which 

needs a very high pressure (800 bars), high mechanical strength, large volume (88.89 cubic 

meters) piston pump to get enough hydrogen fuel for a driving .This may also lead to safety 

related issues if there is any automobile accident, explosion, and flammability [5]. In case of low 

temperature hydrogen storage, large amount of electrical energy for liquefaction (33K) and its 

inevitable boiling rate, make this method not suitable for automobile application [5]. Therefore, 

solid state hydrogen storage [6, 7] technique seems promising in which hydrogen can be stored 

by three process namely (a) chemical absorption in which hydrogen react with the solid material 

to form new compound[8], (b) composite Polymer/metal materials in which transition metals are 

dispersed in polymer[9], (c) physical adsorption in which hydrogen is physically bonded to the 

surface of the material. The most studied material for physical absorption storage is carbon 
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containing material such as metal organic frame work, carbon nanotube, graphite Nano fiber and 

other carbon nanostructure. The main reason for using nanostructured carbon is that it has high 

surface area, tunable pore structure, fast kinetics, low-density, high storage capacity, high 

mechanical strength and durability [10]. The U.S department of energy set targets for gravimetric 

volumetric hydrogen storage are 6.0 wt. % and 45gH2/l for year 2010 which is later on revised to 

9.0 wt. % and 81H2/l for year 2015,  respectively[11]. 

In 2004 Graphene was associated with carbon family by Geim and Novoselov which is a single 

layer of graphite that  revealed many of the superior properties of this first ever isolated two-

dimensional (2-D) structure[12]. It is proposed as a potential candidate for hydrogen storage due 

to its higher specific surface (2630 cm2/gm) and large Young’s modulus (1.0 Tpa), in 

comparison to other carbon structures [13, 14]. Reported value of hydrogen storage capacity for 

Graphene is about to be 1.2wt. % and 0.1 wt. % under a pressure of 10 bars at 77 K and 298 K, 

respectively [18].However, Hau Kun Liu et al [19] showed 0.9 wt. % and 1.2 wt. % of hydrogen 

uptake capacity of MWCNT and GO at room temperature under the pressure of 5 MPa, 

respectively. A linear relationship between the hydrogen adsorption capacity and the graphene 

surface area was reported by Ghosh et al. [20].  However, Tildrinet al[21] reported that the 

0.2wt. % of hydrogen uptake in GO at 77K under pressure of 1bar and room temperature. Haejin 

Kim [22] obtained a hydrogen uptake capacity of 4.8 wt% and 0.49 wt% by graphene oxide 

under 77K and 298K and 9MPa. Hydrogen storage capacity 1.36 wt% and 1.26 wt% of graphene 

oxide wrapped with V2O5 and TiO2 under pressure 7MPa at 77 K temperature respectively, was 

observed [23]. 
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In this paper, we are reporting the role of structural and chemical properties of Graphene oxide 

(GO) and reduced Graphene oxide (rGO) for its hydrogen storage applications. The enhancement 

of storage capacity (1.34 wt. % to 1.90wt. %) in GO is explained on the basis of increase in the 

interlayer spacing between the graphene layers by the attachment of functional groups on 

graphene nanosheet that work as  spacers,  confirmed by the Raman and FTIR investigations. 

2. EXPERIMENTAL 

2.1. Synthesis of Graphene oxide and reduced Graphene oxide  

Graphene oxide is synthesized using a well-documented modified Hummer’s method [24, 25]. 

The starting materials for synthesis of graphene oxide were graphite powder (<45 μm), 

potassium permanganate (KMnO4), sodium nitrate (NaNO3), hydrogen peroxide (H2O2) (30%), 

and concentrated sulfuric acid (H2SO4). The graphite powder (3 g) and sodium nitrate (2 g) are 

stirred in 70 mL of sulfuric acid at a temperature of 0°C. After that, potassium permanganate (9 

g) is slowly and carefully added in the mixture while the temperature is kept below 20°C. After 

that, the ice bath is removed from the reaction flask. The flask is allowed to warm up to room 

temperature and again stirred for 15 minutes. Now, deionizer water (250 mL) is slowly added 

and temperature of the reaction must be below 100°C.  The reaction is stirred for 15 min before 

adding 400 ml of deionized water. After that 30 % of hydrogen peroxide are added to the 

solution and then left to stir for 24 hours. Now, the solution is separated by centrifugation at 

7000 rotations per minute (rpm) using a rotary centrifuge. Brown pasty material of GO was 

obtained. GO was weighed to make colloidal dispersion in distilled water with continuous 

stirring at a temperature of 35°C. A solution of hydrazine hydrate (H2O4) was then added in the 

above solution as a reducing agent and stirred for 3hr at 60. After this, the filtrate turned from 
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brown to black and was again filtered to obtain a black material of reduced Graphene Oxide [24, 

26-27]. 

2.2 Characterization of GO and rGO 

TEM characterization was performed with (FEI Techni G20–stwin) microscope with an 

accelerating voltage of 200 kV. The samples were prepared by sonicating the powder for 2 min 

and then placing a few drops on carbon-coated copper grid and then dried in air before 

examination. The SEM analysis was then carried out using a scanning electron microscope (SEM 

Carl Zeiss evo-18), operating at a voltage of 20 kV.For SEM analysis the fracture surface of 

samples was plated with a thin layer of gold before the scanning.The advanced D-8 x-ray 

diffractometer (acquired from Bruker AXS Germany) having Cu Kα conventional X-ray source 

is used to for XRD analysis of the samples. Raman measurement was performed on an in-situ 

micro Raman (Renishaw, UK) spectroscopy with excitation laser beam wavelength of 514.5nm. 

The powder of GO and rGO were placed on the glass slide that was used for Raman system. 

Fourier-transform infrared (FTIR) spectra were obtained, in the range of 0-4500cm−1, using a 

Shimadzu (FT-IR model 810 1A) spectrometer (KBr pellets). 

2.3 Hydrogen Storage Setup 

Hydrogen adsorption isotherms were measured by indigenous fabricated volumetric apparatus 

working under pressure 80bar regions. The system is made by the stainless steel and brass 

because stainless steel is anticorrosive, non-sensitive to hydrogen gas and of high mechanical 

strength. B-series ball valves, A-lock fitting, and cross fitting are used as the leak proof of the 

system. Pressure transducer is used to measure the accurate pressure having maximum capacity 

of 100bar due to safety precautions. Computer controlled interface program is providing the 

accurate raw data between pressure v/s time. The configuration, elemental units, detailed design, 



6 
 

various tests and operation of the built instrument are similar to those reported by Yang et al. 

[28]. The schematic representation of apparatus is shown in Fig.1.  Prior to the measurement, the 

GO and rGO samples were degassed under rotary vacuum (10-2 tor) at room temperature.  

 

 

 

 

 

 

 

 

 

Fig.1 Schematic diagram of Seiverts’ type volumetric hydrogen storage system. 

The volumes of sample cells for high-pressure system were precisely measured for calibrations. 

Hydrogen adsorption was determined by exposing the samples to hydrogen gas at pressure 80 

bar for six times. 

3. RESULTS AND DISCUSSION 

The SEM micrographs of the as-synthesized (a) GO, and (b) rGO are shown in figure 2. In case 

of GO sample, conjugated ribbon like highly wavy constitution with big wrinkle (red circle area) 

and small wrinkle (blue circle area) are observed. It may be also noted that features marked as 

red circle  exhibits higher roughness than features represent in blue  circle[29]. The difference in 

color contrast in SEM is observed due to variation in surface topography of GO, and number of  
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GO layer in the sample. The darker region is corresponding to multiple layers whereas lighter 

region corresponds to very few layered of Graphene[30-32]. 

Fig.2 SEM images of as-prepared (a) Graphene oxide, and (b) reduced graphene oxide. The 

difference in contrast Fig. 2(a) is observed due to the variation in the number of layers. Highly 

conjugated ribbon morphology with big and small wrinkles is indicated in red and yellow circle 

in Fig. 2(b). 

The surface structure at the nanoscale is further investigated using TEM studies. The HR-TEM 

images of the GO samples are shown in figure 3(a-d). In case of GO, wrinkle Graphene sheet 

covered with ribbon like regular carbon structure similar to SEM images are observed. Such 

morphology of graphene oxide can be attributed to the bonding between the inter layer graphene 

sheets by various functional groups and presence of stress and defect in the GO during the 

solution processing and drying[33]. The bright (blue circle) and dark (red circle) image contrast 

of graphene oxide in Fig. 3(a) is appeared due to variation in the surface topography of graphene 

oxide, as result of variation in density of electrons. The staircase sheet like structure (red arrow 

line) in Fig.3(b), is corresponding to graphene nanosheets. The high resolution image of GO 
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provide the exact atomic structure of the GO Fig 3(c & d).Diverse region of image is marked by 

the color in the fig.3(c). It is shown the small area of the GO is shown the well regular crystalline 

graphene layer with hexagonal lattice which is indicated by the indigo color in fig.3(c).The 

calculated value of distance of the hexagonal lattice is about 10.35nm. However, small amount 

of topological defects are also visible. This may be due to disordered few layer carbon nano-

sheets having amorphous carbon content due to the chemical oxidation which is indicated by 

yellow circle area  in fig. 3(c)[34].  Dark lines near the edges of graphene oxide indicate that 

layer thickness is approximately 5 to 8nm Fig. 3(d), as indicated by the red arrow line. The 

diamond shape indicates strong deformation in lattice by the agglomeration of graphene layers 

during the reaction process[35]. 
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Fig. 3.TEM images of as-synthesized graphene oxide. (a) wrinkled, and (b) nano-sheet like 

morphology of graphene oxide are observed. In image (b), red arrow line indicates the graphene 

nano-sheet, whereas, high resolution image (c) showing regular graphene oxide with perfectly 

flat hexagonal lattice. The yellow circle indicates disorder of few layer carbon nano sheets in fig 

(c). The dark lines near the edge of graphene oxide in image (d) are indicating the layer 

thickness. Diamond shape in image(d) indicates strong deformation in the lattice of graphene 

layer. 

The XRD pattern of the graphite is shown in Fig.4. Most intense peak in the pristine graphite is 

appearing at 2θ = 26.320 which is corresponding to (002) plane of graphite and interlayer spacing 

is about to 3.39 A°.  

 

Fig. 4.XRD pattern of the graphite. 
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Figure 5 shows the XRD pattern of the GO, rGO and hydrogenated rGO. The most prominent 

peak of GO sample is appearing  at 2θ=9.960 which is corresponding to the interlayer spacing 

8.84A° [36].This facilitates the overture of the oxygen functional group and water moisture via 

chemical oxidation. This phenomenon leads to increase the inter layer space in the graphite layer 

which results in increasing the porosity that makes it an effective material for hydrogen storage. 

It may be noted that strongest peak of pristine graphite is also disappearing and sample is 

changing to the Graphene oxide. After the chemical reduction by hydrogen, a new broad peak is 

appearing at 2θ =23.720 which corresponds to inter layer spacing of 3.85A°[37].This is attributed 

to the removal of  functional group and moisture by chemical and thermal reduction. To 

investigate the effect of hydrogen storage on the crystal structure of the GO, XRD pattern is 

recorded in hydrogen gas atmosphere at gas pressure of 1000 mbar using in-situ XRD facility 

[38]. The (002) peak in case of hydrogenated graphene oxide is appearing at 2θ=12.200 and inter 

layer distance 7.1A°.  
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Fig. 5. XRD pattern of GO, rGO and and GO exposed to hydrogen gas at a pressure of the 1000 

mbar. 

This shows that d-spacing for the hydrogenated graphene oxide is lower than that of pristine 

graphene oxide. This confirms that the lattice strain is relaxed in the graphene oxide due to 

hydrogenation. The possible reason could be the reduction of the GO and absorbed of hydrogen 

on the surface GO on exposure to hydrogen gas. It can also be clearly seen that intensity of the 

hydrogenated GO is higher than as-synthesized GO. This is indicating that crystalline nature of 

the graphene oxide is improved on the hydrogenation. 

Raman spectroscopy is an important technique for characterization of sp2 and sp3 hybridization 

of carbon atoms, including those in graphite, GO and rGO. The single, double, and multi-layer 

Graphene can also be differentiated by their raman fingerprints[39]. The raman spectra of the 

GO and rGO are shown in Fig.6 (a, and b).  It shows that the D and G bands of GO observed at 

wave number of 1355 and 1605cm−1 are shifted to the 1340 and 1586 cm−1 in case of rGO sheets.  
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Fig.6. Raman spectra of Graphene oxide and reduced Graphene oxide  

The G-band arises from the stretching of the C-C bond in graphitic materials and is ordinary for 

all sp2 carbon systems. The D-mode is originated by disordered sp2-hybridization, defect and 

some impurity structure of GO. The relative intensity ratio of D and G band of GO is about 0.36, 

while in case ofrGO, the value is about to 0.77.The higher value of intensity ratio in case of rGO 

suggests, the presence of defect that remained even after the removal of large amount of oxygen 

containing functional groups [40].This further confirms that GO is reduced in rGO. The presence 

of 2D band in the GO located at wave number of 2623cm-1 is overtone of D band that can be 

attributed to a second order two phonon of Raman process. This band is useful to determine the 

number of layer and thickness of graphene layer. Intensity ratio of 2D band G band is about 0.75 

that corresponds to 5 -7 number of graphene layer which is consistent with TEM image shown 

Figure 3d. The 2D band in the Graphene oxide also indicates that all graphite layers have been 

oxidized, as shown by the XRD results in Fig 5. The absence of 2D band in rGO spectra 

indicates that  removal of oxygen functionality in the GO by chemical and thermal reduction[39]. 

The FT-IR spectroscopy was utilized to confirm the process for the preparation Graphene oxide 

and reduced graphene oxide. Fig. 7 exhibits FTIR spectra of GO and rGO.  
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Fig.7 FTIR spectra of graphene oxide and reduced graphene oxide 

The peaks located at 3130 cm-1and 1406 cm-1 are showing the stretching and bending of the 

widespread O–H groups in the sample. The characteristic peaks of oxygen are located at wave 

number of 1124 cm-1, 1640 cm-1 which are corresponding to C–O (epoxy or alkoxy), and C=O in 

carboxylic acid, respectively. This suggests that the oxidation of graphite took place during 

synthesis processing by modified Hummers method which is consistent with existing 

literature[41-43]. It is also interesting to note that Fig.7 the intensity of O-H, C–O (epoxy or 

alkoxy), C=O (carboxylic acid) peak in GO is lesser in comparison to reduced graphene oxide. 

 

HYDROGEN STORAGE PERFORMANCE 

Hydrogen storage isotherm of GO and rGO is recorded upto a pressure of 80bar at room 

temperature and shown in Fig 8. Commencing the results, it was observed that hydrogen 

absorption in the GO is much higher than that of rGO. The rGO absorbs a small amount of 

molecular hydrogen1.34 wt% at 80 bar .However, significant increase in H2 uptake was observed 

in thegraphene oxide at same pressure.  
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Fig.8. Hydrogen uptake by graphene oxide and reduced graphene oxide  

The increase H2 uptake (1.90wt%)capacity of GO  as compared to rGO can therefore be 

attributed  to the oxygen functional  group via chemical oxidation, that provide the spacers in 

between the graphene layer. But in the case of rGO, these functional groups are removed by the 

chemical reduction. So, one may note that shortage of oxygen functionalities in rGO obstruct the 

adsorption of hydrogen molecules on the surface of the carbon sheets nano sheet. 

CONCLUSION 

Experimental results related to synthesis of GO and rGO sample by the modified 

hummer’smethod and characterized using SEM, TEM, XRD, FTIR and Raman spectroscopy, are 

presented.Hydrogen storage performance of GO/rGO at room temperature and high pressure(80 

bar) is measured by the ingeniously designed high pressure volumetric hydrogen storage system. 

The calculated value of the hydrogen storage capacity for the GO/rGOis about to 1.90 wt. % and 

1.34wt. %, respectively at room temperature.The results are explained on the basis of increase in 

inert-layer spacing due to presence of oxygen functional groups.  
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