32 research outputs found

    The shape and size distribution of H II regions near the percolation transition

    Get PDF
    Using Shapefinders, which are ratios of Minkowski functionals, we study the morphology of neutral hydrogen (H I) density fields, simulated using seminumerical technique (inside-out), at various stages of reionization. Accompanying the Shapefinders, we also employ the ‘largest cluster statistic’ (LCS), originally proposed in Klypin & Shandarin, to study the percolation in both neutral and ionized hydrogen. We find that the largest ionized region is percolating below the neutral fraction xHI≲0.728 (or equivalently z ≲ 9). The study of Shapefinders reveals that the largest ionized region starts to become highly filamentary with non-trivial topology near the percolation transition. During the percolation transition, the first two Shapefinders – ‘thickness’ (T) and ‘breadth’ (B) – of the largest ionized region do not vary much, while the third Shapefinder – ‘length’ (L) – abruptly increases. Consequently, the largest ionized region tends to be highly filamentary and topologically quite complex. The product of the first two Shapefinders, T × B, provides a measure of the ‘cross-section’ of a filament-like ionized region. We find that, near percolation, the value of T × B for the largest ionized region remains stable at ∼7 Mpc2 (in comoving scale) while its length increases with time. Interestingly, all large ionized regions have similar cross-sections. However, their length shows a power-law dependence on their volume, L ∝ V0.72, at the onset of percolation

    Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies

    Get PDF
    It has been suggested that the internal dynamics of dwarf spheroidal galaxies (dSphs) can be used to test whether or not ultralight axions with ma1022eVm_a\sim 10^{-22}\text{eV} are a preferred dark matter candidate. However, comparisons to theoretical predictions tend to be inconclusive for the simple reason that while most cosmological models consider only dark matter, one observes only baryons. Here we use realistic kinematic mock data catalogs of Milky Way dSph's to show that the "mass-anisotropy degeneracy" in the Jeans equations leads to biased bounds on the axion mass in galaxies with unknown dark matter halo profiles. In galaxies with multiple chemodynamical components this bias can be partly removed by modelling the mass enclosed within each subpopulation. However, analysis of the mock data reveals that the least-biased constraints on the axion mass result from fitting the luminosity-averaged velocity dispersion of the individual chemodynamical components directly. Applying our analysis to two dSph's with reported stellar subcomponents, Fornax and Sculptor, and assuming that the halo profile has not been acted on by baryons, yields core radii rc>1.5r_{c}>1.5 kpc and rc>1.2r_c> 1.2 kpc respectively, and ma<0.4×1022eVm_a<0.4\times 10^{-22}\text{eV} at 97.5\% confidence. These bounds are in tension with the number of observed satellites derived from simple (but conservative) estimates of the subhalo mass function in Milky Way-like galaxies. We discuss how baryonic feedback might affect our results, and the impact of such a small axion mass on the growth of structures in the Universe.Comment: 17 pages, 12 figures. Version to match MNRAS. Analysis extended to anisotropic mocks. Main conclusions unchange

    The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample

    Get PDF
    We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg2deg^2 and volume of 18.7 Gpc3Gpc^3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51, and 0.61. We measure the angular diameter distance DM and Hubble parameter H from the baryon acoustic oscillation (BAO) method after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product DM*H from the Alcock-Paczynski (AP) effect and the growth of structure, quantified by fσ8(z)f{\sigma}8(z), from redshift-space distortions (RSD). We combine measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method. Combined with Planck 2015 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature ΩK=0.0003+/0.0026{\Omega}_K =0.0003+/-0.0026 and a dark energy equation of state parameter w = -1.01+/-0.06, in strong affirmation of the spatially flat cold dark matter model with a cosmological constant (Λ{\Lambda}CDM). Our RSD measurements of fσ8f{\sigma}_8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H0 = 67.3+/-1.0 km/s/Mpc even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H0 = 67.8+/-1.2 km/s/Mpc. Assuming flat Λ{\Lambda}CDM we find Ωm=0.310+/0.005{\Omega}_m = 0.310+/-0.005 and H0 = 67.6+/-0.5 km/s/Mpc, and we find a 95% upper limit of 0.16eV/c20.16 eV/c^2 on the neutrino mass sum

    Aligned metal absorbers and the ultraviolet background at the end of reionization

    Get PDF
    We use observations of spatially-aligned C ii, C iv, Si ii, Si iv, and O i absorbers to probe the slope and intensity of the ultraviolet background (UVB) at z ∼ 6. We accom- plish this by comparing observations with predictions from a cosmological hydrody- namic simulation using three trial UVBs applied in post-processing: a spectrally soft, fluctuating UVB calculated using multi-frequency radiative transfer; a soft, spatially- uniform UVB; and a hard, spatially-uniform “quasars-only” model. When considering our paired high-ionization absorbers (Civ/Siiv), the observed statistics strongly prefer the hard, spatially-uniform UVB. This echoes recent findings that cosmological sim- ulations generically underproduce strong C iv absorbers at z > 5. A single low/high ionization pair (Si ii/Si iv), by contrast, shows a preference for the HM12 UVB, while two more (C ii/C iv and O i/C iv) show no preference for any of the three UVBs. Despite this, future observations of specific absorbers, particularly Si iv/C iv, with next-generation telescopes probing to lower column densities should yield tighter con- ts on the UVB
    corecore