294 research outputs found

    A Constrained Transport Scheme for MHD on Unstructured Static and Moving Meshes

    Get PDF
    Magnetic fields play an important role in many astrophysical systems and a detailed understanding of their impact on the gas dynamics requires robust numerical simulations. Here we present a new method to evolve the ideal magnetohydrodynamic (MHD) equations on unstructured static and moving meshes that preserves the magnetic field divergence-free constraint to machine precision. The method overcomes the major problems of using a cleaning scheme on the magnetic fields instead, which is non-conservative, not fully Galilean invariant, does not eliminate divergence errors completely, and may produce incorrect jumps across shocks. Our new method is a generalization of the constrained transport (CT) algorithm used to enforce the βˆ‡β‹…B=0\nabla\cdot \mathbf{B}=0 condition on fixed Cartesian grids. Preserving βˆ‡β‹…B=0\nabla\cdot \mathbf{B}=0 at the discretized level is necessary to maintain the orthogonality between the Lorentz force and B\mathbf{B}. The possibility of performing CT on a moving mesh provides several advantages over static mesh methods due to the quasi-Lagrangian nature of the former (i.e., the mesh generating points move with the flow), such as making the simulation automatically adaptive and significantly reducing advection errors. Our method preserves magnetic fields and fluid quantities in pure advection exactly.Comment: 13 pages, 9 figures, accepted to MNRAS. Animations available at http://www.cfa.harvard.edu/~pmocz/research.htm

    The large-scale properties of simulated cosmological magnetic fields

    Get PDF
    We perform uniformly sampled large-scale cosmological simulations including magnetic fields with the moving mesh code AREPO. We run two sets of MHD simulations: one including adiabatic gas physics only; the other featuring the fiducial feedback model of the Illustris simulation. In the adiabatic case, the magnetic field amplification follows the B∝ρ2/3B \propto \rho^{2/3} scaling derived from `flux-freezing' arguments, with the seed field strength providing an overall normalization factor. At high baryon overdensities the amplification is enhanced by shear flows and turbulence. Feedback physics and the inclusion of radiative cooling change this picture dramatically. In haloes, gas collapses to much larger densities and the magnetic field is amplified strongly and to the same maximum intensity irrespective of the initial seed field of which any memory is lost. At lower densities a dependence on the seed field strength and orientation, which in principle can be used to constrain models of cosmic magnetogenesis, is still present. Inside the most massive haloes magnetic fields reach values of ∼10βˆ’100  μG\sim 10-100\,\,{\rm \mu G}, in agreement with galaxy cluster observations. The topology of the field is tangled and gives rise to rotation measure signals in reasonable agreement with the observations. However, the rotation measure signal declines too rapidly towards larger radii as compared to observational data.Comment: 23 pages, 19 figures, 1 table. Accepted for publication in MNRAS. Edited to match published versio

    Reducing noise in moving-grid codes with strongly-centroidal Lloyd mesh regularization

    Get PDF
    A method for improving the accuracy of hydrodynamical codes that use a moving Voronoi mesh is described. Our scheme is based on a new regularization scheme that constrains the mesh to be centroidal to high precision while still allowing the cells to move approximately with the local fluid velocity, thereby retaining the quasi-Lagrangian nature of the approach. Our regularization technique significantly reduces mesh noise that is attributed to changes in mesh topology and deviations from mesh regularity. We demonstrate the advantages of our method on various test problems, and note in particular improvements obtained in handling shear instabilities, mixing, and in angular momentum conservation. Calculations of adiabatic jets in which shear excites Kelvin Helmholtz instability show reduction of mesh noise and entropy generation. In contrast, simulations of the collapse and formation of an isolated disc galaxy are nearly unaffected, showing that numerical errors due to the choice of regularization do not impact the outcome in this case.Comment: 9 pages, 14 figures, MNRAS submitte
    • …
    corecore