27 research outputs found

    Radioactivity control strategy for the JUNO detector

    Get PDF
    602siopenJUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day (cpd), therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz (i.e. ∼1 cpd accidental background) in the default fiducial volume, above an energy threshold of 0.7 MeV. [Figure not available: see fulltext.]openAbusleme A.; Adam T.; Ahmad S.; Ahmed R.; Aiello S.; Akram M.; An F.; An Q.; Andronico G.; Anfimov N.; Antonelli V.; Antoshkina T.; Asavapibhop B.; de Andre J.P.A.M.; Auguste D.; Babic A.; Baldini W.; Barresi A.; Basilico D.; Baussan E.; Bellato M.; Bergnoli A.; Birkenfeld T.; Blin S.; Blum D.; Blyth S.; Bolshakova A.; Bongrand M.; Bordereau C.; Breton D.; Brigatti A.; Brugnera R.; Bruno R.; Budano A.; Buscemi M.; Busto J.; Butorov I.; Cabrera A.; Cai H.; Cai X.; Cai Y.; Cai Z.; Cammi A.; Campeny A.; Cao C.; Cao G.; Cao J.; Caruso R.; Cerna C.; Chang J.; Chang Y.; Chen P.; Chen P.-A.; Chen S.; Chen X.; Chen Y.-W.; Chen Y.; Chen Y.; Chen Z.; Cheng J.; Cheng Y.; Chetverikov A.; Chiesa D.; Chimenti P.; Chukanov A.; Claverie G.; Clementi C.; Clerbaux B.; Conforti Di Lorenzo S.; Corti D.; Cremonesi O.; Dal Corso F.; Dalager O.; De La Taille C.; Deng J.; Deng Z.; Deng Z.; Depnering W.; Diaz M.; Ding X.; Ding Y.; Dirgantara B.; Dmitrievsky S.; Dohnal T.; Dolzhikov D.; Donchenko G.; Dong J.; Doroshkevich E.; Dracos M.; Druillole F.; Du S.; Dusini S.; Dvorak M.; Enqvist T.; Enzmann H.; Fabbri A.; Fajt L.; Fan D.; Fan L.; Fang J.; Fang W.; Fargetta M.; Fedoseev D.; Fekete V.; Feng L.-C.; Feng Q.; Ford R.; Formozov A.; Fournier A.; Gan H.; Gao F.; Garfagnini A.; Giammarchi M.; Giaz A.; Giudice N.; Gonchar M.; Gong G.; Gong H.; Gornushkin Y.; Gottel A.; Grassi M.; Grewing C.; Gromov V.; Gu M.; Gu X.; Gu Y.; Guan M.; Guardone N.; Gul M.; Guo C.; Guo J.; Guo W.; Guo X.; Guo Y.; Hackspacher P.; Hagner C.; Han R.; Han Y.; Hassan M.S.; He M.; He W.; Heinz T.; Hellmuth P.; Heng Y.; Herrera R.; Hor Y.K.; Hou S.; Hsiung Y.; Hu B.-Z.; Hu H.; Hu J.; Hu J.; Hu S.; Hu T.; Hu Z.; Huang C.; Huang G.; Huang H.; Huang W.; Huang X.; Huang X.; Huang Y.; Hui J.; Huo L.; Huo W.; Huss C.; Hussain S.; Ioannisian A.; Isocrate R.; Jelmini B.; Jen K.-L.; Jeria I.; Ji X.; Ji X.; Jia H.; Jia J.; Jian S.; Jiang D.; Jiang X.; Jin R.; Jing X.; Jollet C.; Joutsenvaara J.; Jungthawan S.; Kalousis L.; Kampmann P.; Kang L.; Karaparambil R.; Kazarian N.; Khan W.; Khosonthongkee K.; Korablev D.; Kouzakov K.; Krasnoperov A.; Kruth A.; Kutovskiy N.; Kuusiniemi P.; Lachenmaier T.; Landini C.; Leblanc S.; Lebrin V.; Lefevre F.; Lei R.; Leitner R.; Leung J.; Li D.; Li F.; Li F.; Li H.; Li H.; Li J.; Li M.; Li M.; Li N.; Li N.; Li Q.; Li R.; Li S.; Li T.; Li W.; Li W.; Li X.; Li X.; Li X.; Li Y.; Li Y.; Li Z.; Li Z.; Li Z.; Liang H.; Liang H.; Liao J.; Liebau D.; Limphirat A.; Limpijumnong S.; Lin G.-L.; Lin S.; Lin T.; Ling J.; Lippi I.; Liu F.; Liu H.; Liu H.; Liu H.; Liu H.; Liu H.; Liu J.; Liu J.; Liu M.; Liu Q.; Liu Q.; Liu R.; Liu S.; Liu S.; Liu S.; Liu X.; Liu X.; Liu Y.; Liu Y.; Lokhov A.; Lombardi P.; Lombardo C.; Loo K.; Lu C.; Lu H.; Lu J.; Lu J.; Lu S.; Lu X.; Lubsandorzhiev B.; Lubsandorzhiev S.; Ludhova L.; Luo F.; Luo G.; Luo P.; Luo S.; Luo W.; Lyashuk V.; Ma B.; Ma Q.; Ma S.; Ma X.; Ma X.; Maalmi J.; Malyshkin Y.; Mantovani F.; Manzali F.; Mao X.; Mao Y.; Mari S.M.; Marini F.; Marium S.; Martellini C.; Martin-Chassard G.; Martini A.; Mayer M.; Mayilyan D.; Mednieks I.; Meng Y.; Meregaglia A.; Meroni E.; Meyhofer D.; Mezzetto M.; Miller J.; Miramonti L.; Montini P.; Montuschi M.; Muller A.; Nastasi M.; Naumov D.V.; Naumova E.; Navas-Nicolas D.; Nemchenok I.; Nguyen Thi M.T.; Ning F.; Ning Z.; Nunokawa H.; Oberauer L.; Ochoa-Ricoux J.P.; Olshevskiy A.; Orestano D.; Ortica F.; Othegraven R.; Pan H.-R.; Paoloni A.; Parmeggiano S.; Pei Y.; Pelliccia N.; Peng A.; Peng H.; Perrot F.; Petitjean P.-A.; Petrucci F.; Pilarczyk O.; Pineres Rico L.F.; Popov A.; Poussot P.; Pratumwan W.; Previtali E.; Qi F.; Qi M.; Qian S.; Qian X.; Qian Z.; Qiao H.; Qin Z.; Qiu S.; Rajput M.U.; Ranucci G.; Raper N.; Re A.; Rebber H.; Rebii A.; Ren B.; Ren J.; Ricci B.; Robens M.; Roche M.; Rodphai N.; Romani A.; Roskovec B.; Roth C.; Ruan X.; Ruan X.; Rujirawat S.; Rybnikov A.; Sadovsky A.; Saggese P.; Sanfilippo S.; Sangka A.; Sanguansak N.; Sawangwit U.; Sawatzki J.; Sawy F.; Schever M.; Schwab C.; Schweizer K.; Selyunin A.; Serafini A.; Settanta G.; Settimo M.; Shao Z.; Sharov V.; Shaydurova A.; Shi J.; Shi Y.; Shutov V.; Sidorenkov A.; Simkovic F.; Sirignano C.; Siripak J.; Sisti M.; Slupecki M.; Smirnov M.; Smirnov O.; Sogo-Bezerra T.; Sokolov S.; Songwadhana J.; Soonthornthum B.; Sotnikov A.; Sramek O.; Sreethawong W.; Stahl A.; Stanco L.; Stankevich K.; Stefanik D.; Steiger H.; Steinmann J.; Sterr T.; Stock M.R.; Strati V.; Studenikin A.; Sun S.; Sun X.; Sun Y.; Sun Y.; Suwonjandee N.; Szelezniak M.; Tang J.; Tang Q.; Tang Q.; Tang X.; Tietzsch A.; Tkachev I.; Tmej T.; Treskov K.; Triossi A.; Troni G.; Trzaska W.; Tuve C.; Ushakov N.; van den Boom J.; van Waasen S.; Vanroyen G.; Vassilopoulos N.; Vedin V.; Verde G.; Vialkov M.; Viaud B.; Vollbrecht M.C.; Volpe C.; Vorobel V.; Voronin D.; Votano L.; Walker P.; Wang C.; Wang C.-H.; Wang E.; Wang G.; Wang J.; Wang J.; Wang K.; Wang L.; Wang M.; Wang M.; Wang M.; Wang R.; Wang S.; Wang W.; Wang W.; Wang W.; Wang X.; Wang X.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Z.; Wang Z.; Wang Z.; Wang Z.; Waqas M.; Watcharangkool A.; Wei L.; Wei W.; Wei W.; Wei Y.; Wen L.; Wiebusch C.; Wong S.C.-F.; Wonsak B.; Wu D.; Wu F.; Wu Q.; Wu Z.; Wurm M.; Wurtz J.; Wysotzki C.; Xi Y.; Xia D.; Xie X.; Xie Y.; Xie Z.; Xing Z.; Xu B.; Xu C.; Xu D.; Xu F.; Xu H.; Xu J.; Xu J.; Xu M.; Xu Y.; Xu Y.; Yan B.; Yan T.; Yan W.; Yan X.; Yan Y.; Yang A.; Yang C.; Yang C.; Yang H.; Yang J.; Yang L.; Yang X.; Yang Y.; Yang Y.; Yao H.; Yasin Z.; Ye J.; Ye M.; Ye Z.; Yegin U.; Yermia F.; Yi P.; Yin N.; Yin X.; You Z.; Yu B.; Yu C.; Yu C.; Yu H.; Yu M.; Yu X.; Yu Z.; Yu Z.; Yuan C.; Yuan Y.; Yuan Z.; Yuan Z.; Yue B.; Zafar N.; Zambanini A.; Zavadskyi V.; Zeng S.; Zeng T.; Zeng Y.; Zhan L.; Zhang A.; Zhang F.; Zhang G.; Zhang H.; Zhang H.; Zhang J.; Zhang J.; Zhang J.; Zhang J.; Zhang J.; Zhang P.; Zhang Q.; Zhang S.; Zhang S.; Zhang T.; Zhang X.; Zhang X.; Zhang X.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Z.; Zhang Z.; Zhao F.; Zhao J.; Zhao R.; Zhao S.; Zhao T.; Zheng D.; Zheng H.; Zheng M.; Zheng Y.; Zhong W.; Zhou J.; Zhou L.; Zhou N.; Zhou S.; Zhou T.; Zhou X.; Zhu J.; Zhu K.; Zhu K.; Zhu Z.; Zhuang B.; Zhuang H.; Zong L.; Zou J.Abusleme, A.; Adam, T.; Ahmad, S.; Ahmed, R.; Aiello, S.; Akram, M.; An, F.; An, Q.; Andronico, G.; Anfimov, N.; Antonelli, V.; Antoshkina, T.; Asavapibhop, B.; de Andre, J. P. A. M.; Auguste, D.; Babic, A.; Baldini, W.; Barresi, A.; Basilico, D.; Baussan, E.; Bellato, M.; Bergnoli, A.; Birkenfeld, T.; Blin, S.; Blum, D.; Blyth, S.; Bolshakova, A.; Bongrand, M.; Bordereau, C.; Breton, D.; Brigatti, A.; Brugnera, R.; Bruno, R.; Budano, A.; Buscemi, M.; Busto, J.; Butorov, I.; Cabrera, A.; Cai, H.; Cai, X.; Cai, Y.; Cai, Z.; Cammi, A.; Campeny, A.; Cao, C.; Cao, G.; Cao, J.; Caruso, R.; Cerna, C.; Chang, J.; Chang, Y.; Chen, P.; Chen, P. -A.; Chen, S.; Chen, X.; Chen, Y. -W.; Chen, Y.; Chen, Y.; Chen, Z.; Cheng, J.; Cheng, Y.; Chetverikov, A.; Chiesa, D.; Chimenti, P.; Chukanov, A.; Claverie, G.; Clementi, C.; Clerbaux, B.; Conforti Di Lorenzo, S.; Corti, D.; Cremonesi, O.; Dal Corso, F.; Dalager, O.; De La Taille, C.; Deng, J.; Deng, Z.; Deng, Z.; Depnering, W.; Diaz, M.; Ding, X.; Ding, Y.; Dirgantara, B.; Dmitrievsky, S.; Dohnal, T.; Dolzhikov, D.; Donchenko, G.; Dong, J.; Doroshkevich, E.; Dracos, M.; Druillole, F.; Du, S.; Dusini, S.; Dvorak, M.; Enqvist, T.; Enzmann, H.; Fabbri, A.; Fajt, L.; Fan, D.; Fan, L.; Fang, J.; Fang, W.; Fargetta, M.; Fedoseev, D.; Fekete, V.; Feng, L. -C.; Feng, Q.; Ford, R.; Formozov, A.; Fournier, A.; Gan, H.; Gao, F.; Garfagnini, A.; Giammarchi, M.; Giaz, A.; Giudice, N.; Gonchar, M.; Gong, G.; Gong, H.; Gornushkin, Y.; Gottel, A.; Grassi, M.; Grewing, C.; Gromov, V.; Gu, M.; Gu, X.; Gu, Y.; Guan, M.; Guardone, N.; Gul, M.; Guo, C.; Guo, J.; Guo, W.; Guo, X.; Guo, Y.; Hackspacher, P.; Hagner, C.; Han, R.; Han, Y.; Hassan, M. S.; He, M.; He, W.; Heinz, T.; Hellmuth, P.; Heng, Y.; Herrera, R.; Hor, Y. K.; Hou, S.; Hsiung, Y.; Hu, B. -Z.; Hu, H.; Hu, J.; Hu, J.; Hu, S.; Hu, T.; Hu, Z.; Huang, C.; Huang, G.; Huang, H.; Huang, W.; Huang, X.; Huang, X.; Huang, Y.; Hui, J.; Huo, L.; Huo, W.; Huss, C.; Hussain, S.; Ioannisian, A.; Isocrate, R.; Jelmini, B.; Jen, K. -L.; Jeria, I.; Ji, X.; Ji, X.; Jia, H.; Jia, J.; Jian, S.; Jiang, D.; Jiang, X.; Jin, R.; Jing, X.; Jollet, C.; Joutsenvaara, J.; Jungthawan, S.; Kalousis, L.; Kampmann, P.; Kang, L.; Karaparambil, R.; Kazarian, N.; Khan, W.; Khosonthongkee, K.; Korablev, D.; Kouzakov, K.; Krasnoperov, A.; Kruth, A.; Kutovskiy, N.; Kuusiniemi, P.; Lachenmaier, T.; Landini, C.; Leblanc, S.; Lebrin, V.; Lefevre, F.; Lei, R.; Leitner, R.; Leung, J.; Li, D.; Li, F.; Li, F.; Li, H.; Li, H.; Li, J.; Li, M.; Li, M.; Li, N.; Li, N.; Li, Q.; Li, R.; Li, S.; Li, T.; Li, W.; Li, W.; Li, X.; Li, X.; Li, X.; Li, Y.; Li, Y.; Li, Z.; Li, Z.; Li, Z.; Liang, H.; Liang, H.; Liao, J.; Liebau, D.; Limphirat, A.; Limpijumnong, S.; Lin, G. -L.; Lin, S.; Lin, T.; Ling, J.; Lippi, I.; Liu, F.; Liu, H.; Liu, H.; Liu, H.; Liu, H.; Liu, H.; Liu, J.; Liu, J.; Liu, M.; Liu, Q.; Liu, Q.; Liu, R.; Liu, S.; Liu, S.; Liu, S.; Liu, X.; Liu, X.; Liu, Y.; Liu, Y.; Lokhov, A.; Lombardi, P.; Lombardo, C.; Loo, K.; Lu, C.; Lu, H.; Lu, J.; Lu, J.; Lu, S.; Lu, X.; Lubsandorzhiev, B.; Lubsandorzhiev, S.; Ludhova, L.; Luo, F.; Luo, G.; Luo, P.; Luo, S.; Luo, W.; Lyashuk, V.; Ma, B.; Ma, Q.; Ma, S.; Ma, X.; Ma, X.; Maalmi, J.; Malyshkin, Y.; Mantovani, F.; Manzali, F.; Mao, X.; Mao, Y.; Mari, S. M.; Marini, F.; Marium, S.; Martellini, C.; Martin-Chassard, G.; Martini, A.; Mayer, M.; Mayilyan, D.; Mednieks, I.; Meng, Y.; Meregaglia, A.; Meroni, E.; Meyhofer, D.; Mezzetto, M.; Miller, J.; Miramonti, L.; Montini, P.; Montuschi, M.; Muller, A.; Nastasi, M.; Naumov, D. V.; Naumova, E.; Navas-Nicolas, D.; Nemchenok, I.; Nguyen Thi, M. T.; Ning, F.; Ning, Z.; Nunokawa, H.; Oberauer, L.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Orestano, D.; Ortica, F.; Othegraven, R.; Pan, H. -R.; Paoloni, A.; Parmeggiano, S.; Pei, Y.; Pelliccia, N.; Peng, A.; Peng, H.; Perrot, F.; Petitjean, P. -A.; Petrucci, F.; Pilarczyk, O.; Pineres Rico, L. F.; Popov, A.; Poussot, P.; Pratumwan, W.; Previtali, E.; Qi, F.; Qi, M.; Qian, S.; Qian, X.; Qian, Z.; Qiao, H.; Qin, Z.; Qiu, S.; Rajput, M. U.; Ranucci, G.; Raper, N.; Re, A.; Rebber, H.; Rebii, A.; Ren, B.; Ren, J.; Ricci, B.; Robens, M.; Roche, M.; Rodphai, N.; Romani, A.; Roskovec, B.; Roth, C.; Ruan, X.; Ruan, X.; Rujirawat, S.; Rybnikov, A.; Sadovsky, A.; Saggese, P.; Sanfilippo, S.; Sangka, A.; Sanguansak, N.; Sawangwit, U.; Sawatzki, J.; Sawy, F.; Schever, M.; Schwab, C.; Schweizer, K.; Selyunin, A.; Serafini, A.; Settanta, G.; Settimo, M.; Shao, Z.; Sharov, V.; Shaydurova, A.; Shi, J.; Shi, Y.; Shutov, V.; Sidorenkov, A.; Simkovic, F.; Sirignano, C.; Siripak, J.; Sisti, M.; Slupecki, M.; Smirnov, M.; Smirnov, O.; Sogo-Bezerra, T.; Sokolov, S.; Songwadhana, J.; Soonthornthum, B.; Sotnikov, A.; Sramek, O.; Sreethawong, W.; Stahl, A.; Stanco, L.; Stankevich, K.; Stefanik, D.; Steiger, H.; Steinmann, J.; Sterr, T.; Stock, M. R.; Strati, V.; Studenikin, A.; Sun, S.; Sun, X.; Sun, Y.; Sun, Y.; Suwonjandee, N.; Szelezniak, M.; Tang, J.; Tang, Q.; Tang, Q.; Tang, X.; Tietzsch, A.; Tkachev, I.; Tmej, T.; Treskov, K.; Triossi, A.; Troni, G.; Trzaska, W.; Tuve, C.; Ushakov, N.; van den Boom, J.; van Waasen, S.; Vanroyen, G.; Vassilopoulos, N.; Vedin, V.; Verde, G.; Vialkov, M.; Viaud, B.; Vollbrecht, M. C.; Volpe, C.; Vorobel, V.; Voronin, D.; Votano, L.; Walker, P.; Wang, C.; Wang, C. -H.; Wang, E.; Wang, G.; Wang, J.; Wang, J.; Wang, K.; Wang, L.; Wang, M.; Wang, M.; Wang, M.; Wang, R.; Wang, S.; Wang, W.; Wang, W.; Wang, W.; Wang, X.; Wang, X.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Z.; Wang, Z.; Wang, Z.; Wang, Z.; Waqas, M.; Watcharangkool, A.; Wei, L.; Wei, W.; Wei, W.; Wei, Y.; Wen, L.; Wiebusch, C.; Wong, S. C. -F.; Wonsak, B.; Wu, D.; Wu, F.; Wu, Q.; Wu, Z.; Wurm, M.; Wurtz, J.; Wysotzki, C.; Xi, Y.; Xia, D.; Xie, X.; Xie, Y.; Xie, Z.; Xing, Z.; Xu, B.; Xu, C.; Xu, D.; Xu, F.; Xu, H.; Xu, J.; Xu, J.; Xu, M.; Xu, Y.; Xu, Y.; Yan, B.; Yan, T.; Yan, W.; Yan, X.; Yan, Y.; Yang, A.; Yang, C.; Yang, C.; Yang, H.; Yang, J.; Yang, L.; Yang, X.; Yang, Y.; Yang, Y.; Yao, H.; Yasin, Z.; Ye, J.; Ye, M.; Ye, Z.; Yegin, U.; Yermia, F.; Yi, P.; Yin, N.; Yin, X.; You, Z.; Yu, B.; Yu, C.; Yu, C.; Yu, H.; Yu, M.; Yu, X.; Yu, Z.; Yu, Z.; Yuan, C.; Yuan, Y.; Yuan, Z.; Yuan, Z.; Yue, B.; Zafar, N.; Zambanini, A.; Zavadskyi, V.; Zeng, S.; Zeng, T.; Zeng, Y.; Zhan, L.; Zhang, A.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, H.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, P.; Zhang, Q.; Zhang, S.; Zhang, S.; Zhang, T.; Zhang, X.; Zhang, X.; Zhang, X.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Z.; Zhang, Z.; Zhao, F.; Zhao, J.; Zhao, R.; Zhao, S.; Zhao, T.; Zheng, D.; Zheng, H.; Zheng, M.; Zheng, Y.; Zhong, W.; Zhou, J.; Zhou, L.; Zhou, N.; Zhou, S.; Zhou, T.; Zhou, X.; Zhu, J.; Zhu, K.; Zhu, K.; Zhu, Z.; Zhuang, B.; Zhuang, H.; Zong, L.; Zou, J

    Lernfähige Klassifikation von Zeitreihen

    No full text
    Holistic classification methods are presented, i.e., similarity measures will be used but no description of the curves by feature vectors of fixed length. Two different methods are adapted: construction of prototypes for a class and kNN classifier. In a preprocessing step the treated curves are approximated by spline functions. In the case where the measurements are taken from different time intervals, the curves are mapped onto symbol strings. In order to use the kNN method a distance measure in the set of finite strings is defined

    A determination of the masses of the charged Σ hyperons

    No full text
    The masses of the charged Σ hyperons have been determined from the mean ranges of particles from the interactions of K- mesons at rest on hydrogen in emulsion, K- + p → Σ± + π∓, and also the mean rannge of the protons from Σ+ hyperons at rest, Σ+ → p + π0. The results are mΣ+ = 1189.39 ± 0.06 MeV/c2, mΣ- - mΣ+ = 7.91 ± 0.23 MeV/c2, which give mΣ-=1197.30±0.24 MeV/c2. The finding that the energy loss rate of low velocity negative particles is less than that of positive particles has been confirmed, but in contradiction with an earlier result, the range straggling for negative particles was not found to be anomalously high. © 1972.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The π+ mesonic decays of light hypernuclei

    No full text
    Twenty examples of π+ mesonic decays of light hypernuclei have been found together with 7000 π- mesonic decays. The ratio R4 of π+ mesonic decays for the gL4 He hypernucleus has been computed from the results of this work and those of a previous experiment [1] and is found to lie between the values 5.4 ± 1.5%1.7% and 6.9 ± 1.8%2.1%. The π+ mesonic decays of other species of hypernuclei are briefly discussed. © 1969.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Kysy asiantuntijalta riippuvuuksista : julkinen neuvontapalsta A-klinikkasäätiön Päihdelinkissä

    Get PDF
    Päihdelinkki on A-klinikkasäätiön ylläpitämä internetpalvelu päihteistä ja riippuvuuksista. Päihdelin-kissä on tarjottu henkilökohtaista verkkoneuvontaa vuodesta 1998 lähtien. Loppuvuodesta 2008 Päihde-linkin keskustelualueelle perustettiin julkinen neuvontapalsta, asiantuntijapalsta, joka oli toiminnassa 7.10-30.11.2008. Palstalle pystyi kirjoittamaan kysymyksen, johon asiantuntijat kävivät vastaamassa noin viikon kuluessa. Kysymysten kirjoittaminen ja lukeminen ei vaatinut rekisteröitymistä, vaan ky-symykset vastauksineen olivat kaikkien palstan kävijöiden nähtävissä. Palstan vastaajina toimi kahdek-san päihdealan ammattilaista. Tämän opinnäytetyön tarkoituksena oli kuvata palstan toimintaa ja sinne tulleita kysymyksiä: mitä aihealuetta palstalle tulleet kysymykset käsittelivät, koskivatko kysymykset kysyjän omaa vai jonkun läheisen tilannetta ja mitä kysyjä kysymyksellään palstalta haki. Tämän lisäksi tarkoituksena oli myös selvittää vastaajien näkemyksiä ja kokemuksia julkisesta neuvontapalvelusta. Opinnäytetyöni on triangulaatiotutkimus. Aineistona käytin palstalle tulleita kysymyksiä sekä materiaalia, jonka keräsin lähettämällä sähköisen kyselylomakkeen palstan vastaajille. Analyysimenetelminä käytin aineistolähtöistä sisällönanalyysiä ja tilastollisia menetelmiä, kuten ristiintaulukointia. Palstalle lähetettiin yhteensä 52 kysymystä. Suurin osa kysymyksistä käsitteli alkoholinkäyttöä, mutta kysymyksiä tuli runsaasti myös huumeista ja lääkkeistä. Kysymyksistä lähes kaksi kolmannesta koski kysyjän omaa tilannetta ja eniten kysymyksillä haettiin tukea omien valintojen tekemiseen. Myös faktatietoa päihteistä ja neuvoja riippuvuusongelman ratkaisemiseksi haettiin. Koska tulokset koskevat vain yksittäistä tapausta, ei niitä voida yleistää koskemaan kaikkia julkisia neuvontapalstoja. Tarpeen olisikin tutkia, haetaanko muiltakin julkisilta neuvontapalstoilta näitä samoja asioita. Sähköiseen kyselyyn vastasi viisi palstan vastaajaa. Palstan tekninen toteutus onnistui hyvin, lukuun ottamatta kysymysten varausjärjestelmää, joka koettiin aluksi hieman sekavaksi. Vastaajien mielestä julkinen neuvontapalsta on hyvä lisäpalvelu, mutta sitä ei ole tarpeen tarjota jatkuvasti. Palstan avulla voidaan auttaa useampia kuin henkilökohtaisella neuvontapalvelulla, sillä kysymyksiä vastauksineen voi lukea myös ne, jotka eivät itse uskalla kysyä. Toisten samankaltaisen tilanteen huomaaminen voi rohkaista ottamaan itsekin yhteyttä tai hakemaan muulla tavalla apua.AddictionLink is an online service maintained by the A-Clinic Foundation, which deals with drugs and addictions. AddictionLink has offered online advice for individuals since 1998. At the end of 2008 an open advice site, an expert advice column, was created on the AddictionLink's discussion site. This expert column was in operation from 7.10.2008 until 30.11.2008. People could write questions to this site which the experts would reply within a week. Creating questions for the experts and reading the column did not require registration; all questions and answers were available for all visitors. The expert board consisted of eight trained specialists working with substance abusers. The goal of this study was to describe the function of the column and the questions it received: what did the questions that were received deal with, did the questions concern the situation of the person posing the question or someone else, and what sort of an end result people were hoping for. In addition to this, one of the main purposes was to discover what kind of ideas and experiences the respondents had on the public advice services. The study was conducted by triangular research. The material consisted of questions sent to the ad-vice column as well as material collected by sending an online questionnaire to those replying to the questions. The methods of analysis were material-based content analysis and statistical methods such as cross tabulation. In total, there were 52 questions sent to the column. Most of the questions dealt with the use of al-cohol, but there were also a great deal of questions on narcotics and prescription medicines. Two thirds of the questions were from people experiencing the problems - they were mostly concerned with getting support for making their own choices. There were also requests for factual information on narcotics and help on how to solve substance abuse problems. Because the results of the questionnaire only dealt with one particular case at a time, they could not be generalised to depict all public advice columns. In order to do generalisations it would be necessary to see if other advice columns receive similar questions. The online questionnaire was answered by five of the experts. The technical implementation was a success, with the exception of the booking system for the questions, which was considered confusing at first. The experts thought that a public advice column was a good extra service but it would not be ne-cessary to have it available all the time. More people can be helped with the column than with an indi-vidual advice service, because its questions and answers can also be read by those who dare not pose any questions of their own. Finding out that others are in a similar situation may encourage people to get in touch with experts or seek help in other ways

    Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU

    No full text
    The ordering of the neutrino mass eigenstates is one of the fundamental open questions in neutrino physics. While current-generation neutrino oscillation experiments are able to produce moderate indications on this ordering, upcoming experiments of the next generation aim to provide conclusive evidence. In this paper we study the combined performance of the two future multi-purpose neutrino oscillation experiments JUNO and the IceCube Upgrade, which employ two very distinct and complementary routes towards the neutrino mass ordering. The approach pursued by the 20kt20\,\mathrm{kt} medium-baseline reactor neutrino experiment JUNO consists of a careful investigation of the energy spectrum of oscillated νˉe\bar{\nu}_e produced by ten nuclear reactor cores. The IceCube Upgrade, on the other hand, which consists of seven additional densely instrumented strings deployed in the center of IceCube DeepCore, will observe large numbers of atmospheric neutrinos that have undergone oscillations affected by Earth matter. In a joint fit with both approaches, tension occurs between their preferred mass-squared differences Δm312=m32m12 \Delta m_{31}^{2}=m_{3}^{2}-m_{1}^{2} within the wrong mass ordering. In the case of JUNO and the IceCube Upgrade, this allows to exclude the wrong ordering at >5σ>5\sigma on a timescale of 3--7 years --- even under circumstances that are unfavorable to the experiments' individual sensitivities. For PINGU, a 26-string detector array designed as a potential low-energy extension to IceCube, the inverted ordering could be excluded within 1.5 years (3 years for the normal ordering) in a joint analysis

    Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU

    No full text
    The ordering of the neutrino mass eigenstates is one of the fundamental open questions in neutrino physics. While current-generation neutrino oscillation experiments are able to produce moderate indications on this ordering, upcoming experiments of the next generation aim to provide conclusive evidence. In this paper we study the combined performance of the two future multi-purpose neutrino oscillation experiments JUNO and the IceCube Upgrade, which employ two very distinct and complementary routes towards the neutrino mass ordering. The approach pursued by the 20kt20\,\mathrm{kt} medium-baseline reactor neutrino experiment JUNO consists of a careful investigation of the energy spectrum of oscillated νˉe\bar{\nu}_e produced by ten nuclear reactor cores. The IceCube Upgrade, on the other hand, which consists of seven additional densely instrumented strings deployed in the center of IceCube DeepCore, will observe large numbers of atmospheric neutrinos that have undergone oscillations affected by Earth matter. In a joint fit with both approaches, tension occurs between their preferred mass-squared differences Δm312=m32m12 \Delta m_{31}^{2}=m_{3}^{2}-m_{1}^{2} within the wrong mass ordering. In the case of JUNO and the IceCube Upgrade, this allows to exclude the wrong ordering at >5σ>5\sigma on a timescale of 3--7 years --- even under circumstances that are unfavorable to the experiments' individual sensitivities. For PINGU, a 26-string detector array designed as a potential low-energy extension to IceCube, the inverted ordering could be excluded within 1.5 years (3 years for the normal ordering) in a joint analysis

    Frontespizio

    Get PDF
    The ordering of the neutrino mass eigenstates is one of the fundamental open questions in neutrino physics. While current-generation neutrino oscillation experiments are able to produce moderate indications on this ordering, upcoming experiments of the next generation aim to provide conclusive evidence. In this paper we study the combined performance of the two future multi-purpose neutrino oscillation experiments JUNO and the IceCube Upgrade, which employ two very distinct and complementary routes towards the neutrino mass ordering. The approach pursued by the 20kt20\,\mathrm{kt} medium-baseline reactor neutrino experiment JUNO consists of a careful investigation of the energy spectrum of oscillated νˉe\bar{\nu}_e produced by ten nuclear reactor cores. The IceCube Upgrade, on the other hand, which consists of seven additional densely instrumented strings deployed in the center of IceCube DeepCore, will observe large numbers of atmospheric neutrinos that have undergone oscillations affected by Earth matter. In a joint fit with both approaches, tension occurs between their preferred mass-squared differences Δm312=m32m12 \Delta m_{31}^{2}=m_{3}^{2}-m_{1}^{2} within the wrong mass ordering. In the case of JUNO and the IceCube Upgrade, this allows to exclude the wrong ordering at >5σ>5\sigma on a timescale of 3--7 years --- even under circumstances that are unfavorable to the experiments' individual sensitivities. For PINGU, a 26-string detector array designed as a potential low-energy extension to IceCube, the inverted ordering could be excluded within 1.5 years (3 years for the normal ordering) in a joint analysis

    Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU

    No full text

    Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment

    No full text
    We study damping signatures at the Jiangmen Underground Neutrino Observatory (JUNO), a medium-baseline reactor neutrino oscillation experiment. These damping signatures are motivated by various new physics models, including quantum decoherence, ν3 decay, neutrino absorption, and wave packet decoherence. The phenomenological effects of these models can be characterized by exponential damping factors at the probability level. We assess how well JUNO can constrain these damping parameters and how to disentangle these different damping signatures at JUNO. Compared to current experimental limits, JUNO can significantly improve the limits on τ3/m3 in the ν3 decay model, the width of the neutrino wave packet σx, and the intrinsic relative dispersion of neutrino momentum σrel
    corecore