114 research outputs found

    Cochlear erosion due to a facial nerve schwannoma

    Get PDF
    Facial nerve schwannomas are rare benign neoplasms. We report a case of a 60-year-old woman who initially presented with vestibular complaints. Magnetic resonance imaging (MRI) revealed a facial nerve schwannoma centered on the right geniculate ganglion extending in the labyrinthine segment. The patient consulted again after 2 months because she developed a sudden and severe right-sided sensorineural hearing loss. MRI showed no progression or pathological enhancement in the membranous labyrinth. A cone beam computed tomography (CT) of the temporal bone was performed and revealed a large erosion at the region of the geniculate ganglion in open communication with the middle turn of the cochlea. This case report demonstrates the importance of CT in facial nerve schwannomas for evaluating the impact on the surrounding structures

    Surgical castration with pain relief affects the health and productive performance of pigs in the suckling period

    Get PDF
    peer-reviewedBackground Surgical castration is still practiced in many EU countries to avoid undesirable aggressive behavior and boar taint in male pigs. However, evidence shows that castration is painful and has a detrimental influence on pig health. This study investigated the clinical and productive effects of surgical castration in the suckling period. A total of 3696 male pigs, 3 to 6 days old, comprising of 721 litters from two different farms were included in the study. Within each litter, half of the males were kept as intact males (IM) and half were surgically castrated (CM). Surgical castration was conducted by a trained farmer. Average daily gain (ADG), body weight at weaning (BWW), percentage of pre-weaning mortality (PWM) and antibiotic usage were measured. Pig major acute phase protein (PigMAP) serum concentrations were analyzed prior to castration, and on days 1 and 10 after castration. Productive performance data were analyzed using a linear mixed model. Mortality and percentage of pigs treated with antibiotics were analyzed using the Fisher’s exact test. Results No overall differences in BWW and ADG were observed between the two groups. However, differences were observed when the same effects were analyzed in the 25% lightest, 50% medium and 25% heaviest pigs at birth. PWM was higher in CM than in IM groups (6.3% vs 3.6%; p < 0.001), especially in the light (12.2% vs 6.2%; p = 0.02) and in the medium (5.5% vs 2.7%; p = 0.04) weight groups. In the heaviest pigs group PWM was not affected by castration, but IM tended to show higher ADG (p = 0.06) and showed higher BWW (8.0 kg vs 7.8 kg; p = 0.05) than CM. There were no differences in percentage of pigs treated with antibiotics between the two groups (5.8% vs 5.8%; p = 0.98) in this study. Furthermore, PigMAP was increased in CM the day after castration (0.944 mg/ml vs 0.847 mg/ml; p = 0.025), but there was no difference between CM and IM groups at day 10. Conclusions Surgical castration has a negative impact on production in the suckling period because it causes an increase in PWM, especially in pigs in the three lower quartiles for body weight, and negatively affects the BWW in pigs born in the highest quartile for body weight

    ERS International Congress 2023:highlights from the Interstitial Lung Diseases Assembly

    Get PDF
    This article summarises a selection of scientific highlights in the field of interstitial lung diseases (ILDs) presented at the International Congress of the European Respiratory Society in 2023. Translational and clinical studies focused on the whole spectrum of ILDs, from (ultra)rare ILDs to sarcoidosis, ILDs associated with connective tissue disease and idiopathic pulmonary fibrosis. The main topics of the 2023 Congress presentations were improving the diagnostic process of ILDs, better prediction of disease course and investigation of novel treatment options.</p

    Simulating galaxy Clusters -II: global star formation histories and galaxy populations

    Full text link
    Cosmological (LambdaCDM) TreeSPH simulations of the formation and evolution of galaxy groups and clusters have been performed. The simulations invoke star formation, chemical evolution with non-instantaneous recycling, metal dependent radiative cooling, strong star burst and (optionally) AGN driven galactic super winds, effects of a meta-galactic UV field and thermal conduction. The properties of the galaxy populations in two clusters, one Virgo-like (T~3 keV) and one (sub) Coma-like (T~6 keV), are discussed. The global star formation rates of the cluster galaxies are found to decrease very significantly with time from redshift z=2 to 0, in agreement with observations. The total K-band luminosity of the cluster galaxies correlates tightly with total cluster mass, and for models without additional AGN feedback, the zero point of the relation matches the observed one fairly well. The match to observed galaxy luminosity functions is reasonable, except for a deficiency of bright galaxies (M_B < -20), which becomes increasingly significant with super-wind strength. Results of a high resolution test indicate that this deficiency is not due to ``over--merging''. The redshift evolution of the luminosity functions from z=1 to 0 is mainly driven by luminosity evolution, but also by merging of bright galaxies with the cD. The colour--magnitude relation of the cluster galaxies matches the observed "red sequence" very well and, on average, galaxy metallicity increases with luminosity. As the brighter galaxies are essentially coeval, the colour--magnitude relation results from metallicity rather than age effects, as observed.Comment: 15 pages, 10 figures. Final version accepted by MNRAS, presenting new simulations and major changes. Printing in colour recommende

    Scaling relations of metallicity, stellar mass, and star formation rate in metal-poor starbursts: II. Theoretical models

    Full text link
    Scaling relations of metallicity (O/H), star formation rate (SFR), and stellar mass give important insight on galaxy evolution. They are obeyed by most galaxies in the Local Universe and also at high redshift. In a companion paper, we compiled a sample of ~1100 galaxies from redshift 0 to ~3, spanning almost two orders of magnitude in metal abundance, a factor of 106\sim10^6 in SFR, and of ~10^5 in stellar mass. We have characterized empirically the star-formation "main sequence" (SFMS) and the mass-metallicity relation (MZR) for this sample, and also identified a class of low-metallicity starbursts, rare locally but more common in the distant universe. These galaxies deviate significantly from the main scaling relations, with high SFR and low metal content for a given M*. In this paper, we model the scaling relations and explain these deviations from them with a set of multi-phase chemical evolution models based on the idea that, independently of redshift, initial physical conditions in a galaxy's evolutionary history can dictate its location in the scaling relations. Our models are able to successfully reproduce the O/H, M*, and SFR scaling relations up to z~3, and also successfully predict the molecular cloud fraction as a function of stellar mass. These results suggest that the scaling relations are defined by different modes of star formation: an "active" starburst mode, more common at high redshift, and a quiescent "passive" mode that is predominant locally and governs the main trends.Comment: 17 pages, 7 figures, accepted for publication by MNRA

    A large-scale galaxy structure at z = 2.02 associated with the radio galaxy MRC 0156-252

    Get PDF
    We present the spectroscopic confirmation of a structure of galaxies surrounding the radio galaxy MRC 0156-252 at z = 2.02. The structure was initially discovered as an overdensity of both near-infrared selected z > 1.6 and mid-infrared selected z > 1.2 galaxy candidates. We used the VLT/FORS2 multi-object spectrograph to target ~80 high-redshift galaxy candidates, and obtain robust spectroscopic redshifts for more than half the targets. The majority of the confirmed sources are star-forming galaxies at z > 1.5. In addition to the radio galaxy, two of its close-by companions (<6″) also show AGN signatures. Ten sources, including the radio galaxy, lie within | z − 2.020 | <0.015 (i.e., velocity offsets <1500 km s^-1) and within projected 2 Mpc comoving of the radio galaxy. Additional evidence suggests not only that the galaxy structure associated with MRC 0156-252 is a forming galaxy cluster but also that this structure is most probably embedded in a larger-scale structure

    A Milky Way-like barred spiral galaxy at a redshift of 3

    Get PDF
    International audienceThe majority of massive disk galaxies in the local Universe show a stellar barred structure in their central regions, including our Milky Way. Bars are supposed to develop in dynamically cold stellar disks at low redshift, as the strong gas turbulence typical of disk galaxies at high redshift suppresses or delays bar formation. Moreover, simulations predict bars to be almost absent beyond z=1.5z = 1.5 in the progenitors of Milky Way-like galaxies. Here we report observations of ceers-2112, a barred spiral galaxy at redshift zphot3z_{\rm phot} \sim 3, which was already mature when the Universe was only 2 Gyr old. The stellar mass (M=3.9×109MM_{\star} = 3.9 \times 10^9 M_{\odot}) and barred morphology mean that ceers-2112 can be considered a progenitor of the Milky Way, in terms of both structure and mass-assembly history in the first 2 Gyr of the Universe, and was the closest in mass in the first 4 Gyr. We infer that baryons in galaxies could have already dominated over dark matter at z3z \sim 3, that high-redshift bars could form in approximately 400 Myr and that dynamically cold stellar disks could have been in place by redshift z=45z = 4-5 (more than 12 Gyrs ago)

    Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life

    Get PDF
    Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Systematic Biology 59 (2010): 518-533, doi:10.1093/sysbio/syq037.An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses. Here, we use a taxon-rich strategy to assess eukaryotic relationships. We show that analyses emphasizing broad taxonomic sampling (up to 451 taxa representing 72 major lineages) combined with a moderate number of genes yield a well-resolved eukaryotic tree of life. The consistency across analyses with varying numbers of taxa (88-451) and levels of missing data (17-69%) supports the accuracy of the resulting topologies. The resulting stable topology emerges without the removal of rapidly evolving genes or taxa, a practice common to phylogenomic analyses. Several major groups are stable and strongly supported in these analyses (e.g. SAR, Rhizaria, Excavata), while the proposed supergroup ‘Chromalveolata’ is rejected. Further, extensive instability among photosynthetic lineages suggests the presence of systematic biases including endosymbiotic gene transfer from symbiont (nucleus or plastid) to host. Our analyses demonstrate that stable topologies of ancient evolutionary relationships can be achieved with broad taxonomic sampling and a moderate number of genes. Finally, taxonrich analyses such as presented here provide a method for testing the accuracy of relationships that receive high bootstrap support in phylogenomic analyses and enable placement of the multitude of lineages that lack genome scale data
    corecore