160 research outputs found

    Emotion Recognition by Video: A review

    Full text link
    Video emotion recognition is an important branch of affective computing, and its solutions can be applied in different fields such as human-computer interaction (HCI) and intelligent medical treatment. Although the number of papers published in the field of emotion recognition is increasing, there are few comprehensive literature reviews covering related research on video emotion recognition. Therefore, this paper selects articles published from 2015 to 2023 to systematize the existing trends in video emotion recognition in related studies. In this paper, we first talk about two typical emotion models, then we talk about databases that are frequently utilized for video emotion recognition, including unimodal databases and multimodal databases. Next, we look at and classify the specific structure and performance of modern unimodal and multimodal video emotion recognition methods, talk about the benefits and drawbacks of each, and then we compare them in detail in the tables. Further, we sum up the primary difficulties right now looked by video emotion recognition undertakings and point out probably the most encouraging future headings, such as establishing an open benchmark database and better multimodal fusion strategys. The essential objective of this paper is to assist scholarly and modern scientists with keeping up to date with the most recent advances and new improvements in this speedy, high-influence field of video emotion recognition

    eMotions: A Large-Scale Dataset for Emotion Recognition in Short Videos

    Full text link
    Nowadays, short videos (SVs) are essential to information acquisition and sharing in our life. The prevailing use of SVs to spread emotions leads to the necessity of emotion recognition in SVs. Considering the lack of SVs emotion data, we introduce a large-scale dataset named eMotions, comprising 27,996 videos. Meanwhile, we alleviate the impact of subjectivities on labeling quality by emphasizing better personnel allocations and multi-stage annotations. In addition, we provide the category-balanced and test-oriented variants through targeted data sampling. Some commonly used videos (e.g., facial expressions and postures) have been well studied. However, it is still challenging to understand the emotions in SVs. Since the enhanced content diversity brings more distinct semantic gaps and difficulties in learning emotion-related features, and there exists information gaps caused by the emotion incompleteness under the prevalently audio-visual co-expressions. To tackle these problems, we present an end-to-end baseline method AV-CPNet that employs the video transformer to better learn semantically relevant representations. We further design the two-stage cross-modal fusion module to complementarily model the correlations of audio-visual features. The EP-CE Loss, incorporating three emotion polarities, is then applied to guide model optimization. Extensive experimental results on nine datasets verify the effectiveness of AV-CPNet. Datasets and code will be open on https://github.com/XuecWu/eMotions

    Optimization Analysis of Main Power House Design of a Large-Scale Compressed Air Energy Storage Power Station

    Get PDF
    [Introduction] The compressed air energy storage power station lacks corresponding codes as technical support in the design of main power House. There are some controversial and inapplicable provisions in the Code for design of compressed air station, which is difficult to meet the needs of the current large-scale development of compressed air storage power station. The paper aims to solve these critical problems in the implementation of the codes and to find better design schemes for the main power House. [Method] The explosion risks of the air energy storage compressor were analyzed, an economic comparison between the combined power House design and the separate power House design was made, and the storage volume of compressed air in the compressor room was sorted out and summarized. [Result] The results show that the air energy storage compressor has no chemical explosion hazard, and no physical explosion hazard on the premise that the equipment′s quality meets the standard. Combined power House design can save a lot of investment compared with separate power House design. The storage volume of compressed air in the compressor room is smaller than that of the main power House. [Conclusion] From the perspective of process flow, system integration, overall economy, convenient operation and maintenance, combined power House design is recommended for the main power House of a large-scale compressed air energy storage power station. According to the process layout and maintenance operation requirements, large platform structure is also recommended. A class-A fire door can be set up when the compressor power House is adjacent to other rooms, and the door buckets together with other protective measures should be set up

    Chip-scale solar thermal electrical power generation

    Get PDF
    There is an urgent need for alternative compact technologies that can derive and store energy from the sun, especially the large amount of solar heat that is not effectively used for power generation. Here, we report a combination of solution- and neat-film-based molecular solar thermal (MOST) systems, where solar energy can be stored as chemical energy and released as heat, with microfabricated thermoelectric generators to produce electricity when solar radiation is not available. The photophysical properties of two MOST couples are characterized both in liquid with a catalytical cycling setup and in a phase-interconvertible neat film. Their suitable photophysical properties let us combine them individually with a microelectromechanical ultrathin thermoelectric chip to use the stored solar energy for electrical power generation. The generator can produce, as a proof of concept, a power output of up to 0.1 nW (power output per unit volume up to 1.3 W m−3). Our results demonstrate that such a molecular thermal power generation system has a high potential to store and transfer solar power into electricity and is thus potentially independent of geographical restrictions.This work was supported by the K. & A. Wallenberg Foundation, the Swedish Foundation for Strategic Research, the Swedish Research Council Formas, the Swedish Energy Agency, the European Research Council (ERC) under grant agreement CoG, PHOTHERM - 101002131, the Catalan Institute of Advanced Studies (ICREA), and the European Union's Horizon 2020 Framework Programme under grant agreement no. 951801. The MEMS-TEG chip manufacture and experimentation were supported by the National Natural Science Foundation of China (grant 51776126). The authors would like to thank the Center for Advanced Electronic Materials and Devices (AEMD) and Instrumental Analysis Center of Shanghai Jiao Tong University (SJTU) and the startup fund of Shanghai Jiao Tong University. We thank Dr. Sarah Lerch and Prof. Ben Greatrex for reading and commenting on the manuscript. We acknowledge Neuroncollective.com and Daniel Spacek for the graphical abstract.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    Ni-based bimetallic heterogeneous catalysts for energy and environmental applications

    Get PDF
    Bimetallic catalysts have attracted extensive attention for a wide range of applications in energy production and environmental remediation due to their tunable chemical/physical properties. These properties are mainly governed by a number of parameters such as compositions of the bimetallic systems, their preparation method, and their morphostructure. In this regard, numerous efforts have been made to develop “designer” bimetallic catalysts with specific nanostructures and surface properties as a result of recent advances in the area of materials chemistry. The present review highlights a detailed overview of the development of nickel-based bimetallic catalysts for energy and environmental applications. Starting from a materials science perspective in order to obtain controlled morphologies and surface properties, with a focus on the fundamental understanding of these bimetallic systems to make a correlation with their catalytic behaviors, a detailed account is provided on the utilization of these systems in the catalytic reactions related to energy production and environmental remediation. We include the entire library of nickel-based bimetallic catalysts for both chemical and electrochemical processes such as catalytic reforming, dehydrogenation, hydrogenation, electrocatalysis and many other reactions

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore