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Highlights

• Phase rainbow refractometry (PRR) is developed to measure droplet temperature, size and evaporation

rate

• Quantitative relationship between ripple phase shift and size change is theoretical derived

• Transient evaporation rate of n-nonane and n-heptane is experimentally measured and compared with

models
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Graphical Abstract

Phase rainbow refractometry image and phase shift of ripple with size changes
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Abstract

The accurate measurements of droplet temperature, size and evaporation rate are of great importance to

characterize the heat and mass tranfer during evaporation/condensation processes. The nanoscale size

change of a micron-sized droplet exactly describes its transient mass transfer, but is difficult to measure

because it is smaller than the resolutions of current size measurement techniques. The Phase Rainbow Re-

fractometry (PRR) technique is developed and applied to measure droplet temperature, size and transient

size changes and thereafter evaporation rate simultaneously. The measurement principle of PRR is theo-

retically derived, and it reveals that the phase shift of the time-resolved ripple structures linearly depends

on, and can directly yield, nano-scale size changes of droplets. The PRR technique is first verified through

the simulation of rainbows of droplets with changing size, and results show that PRR can precisely measure

droplet refractive index, absolute size, as well as size change with absolute and relative errors within several

nanometers and 0.6%, respectively, and thus PRR permits accurate measurements of transient droplet evap-

oration rates. The evaporation of flowing single n-nonane droplet and mono-dispersed n-heptane droplet

stream are investigated by two PRR systems with a high speed linear CCD and a low speed array CCD,

respectively. Their transient evaporation rates are experimentally determined and quantitatively agree well

with the theoretical values predicted by classical Maxwell and Stefan-Fuchs models. With the demonstration

of evaporation rate measurement of monocomponent droplet in this work, PRR is an ideal tool for mea-

surements of transient droplet evaporation/condensation processes, and can be extended to multicomponent

droplets in a wide range of industrially-relevant applications.
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index
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1. Introduction

Droplets in sprays have tremendous applications in a wide variety of fields, including spray drying in

the food industry, pharmaceutical powder production, and the mixing of liquid fuels in automotive and

aeronautical combustion systems. In these applications, droplets dynamically evolve in morphology upon

breakup from ligaments due to hydrodynamic instability. Besides, droplets can also interact with a sur-

rounding medium through coupled heat and mass transfer processes, such as heating, cooling, condensation

and evaporation [1, 2]. In order to gain a comprehensive understanding of droplet dynamics, measurements

of transient droplets properties, such as size and temperature, as well as their changes during these dynamic

processes, are of essential importance. Hence, a range of optical methods have been proposed based on the

complex interactions between light and droplets [3, 4, 5, 6] to measure such properties non-intrusively. With

regard to morphology characterization, the non-spherical or even irregular droplets are usually recorded by

2D direct microscopic imaging [7, 8] or 3D digital holographic imaging [9, 10]. In terms of size measurement,

in addition to the above two imaging approaches, several interferometric methods have been proposed for

spherical droplets. PDA (Phase Doppler Anemometry) is a commercialized instrument for size and velocity

measurement for single spherical droplets [11]. Interferometric Particle Imaging (IPI) [12, 13, 14], which was

originally proposed as Interferometric Laser Imaging for Droplet Sizing (ILIDS) [15], can measure sizes of

droplets in a planar region by analyzing the fringes spacing created by the interference of the droplet’s glare

points. Morphology-Dependent Resonance (MDR) of a spherical droplet, which is also called Whispering-

Gallery Modes (WGM) [16, 17], is a chaotic phenomenon characterized by angularly pulsed peaks with large

intensities, and results from constructive interference of multiple light waves that circulate around a sphere’s

rim via total internal reflections, and return in phase. This only occurs at particular resonant conditions

when the optical path length of a round trip inside the droplet is an integral multiple of the exciting light’s

wavelength. These periodical peaks can be used to measure the droplet size with ultra-high accuracy. As

for droplet temperature, it is usually measured with spectroscopic imaging, such as thermal infrared imag-

ing, or Laser-Induced Fluorescence (LIF) which can also be employed to measure species concentration in

multicomponent droplets [18, 19, 20].

The evaporation rate of a droplet, as characterized by the well-known D2-law, is an issue of great

importance, and has been intensively documented [1, 21, 22]. Experimental droplet evaporation rates are

usually determined by attaching a droplet onto a fiber, and tracking its change of size with time [23, 24, 25].

This is a prevailing approach and can be operated at elevated temperatures and pressures. For this approach,

the studied droplets tend to be relatively large with initial sizes up to a millimeter. These droplets are

much larger than those typically found in combustion systems, which are in the order of tens of microns

or less. The attachment to a fiber affects the evaporation rate through the conduction of heat, but also

through the modification of the droplet’s external area and shape by surface tension, which in turn affect the
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exchange of heat with the surrounding gas. Moreover, the effects of droplet relative velocity with respect

to its surrounding, which could be up to dozens and or even hundreds of meters per second in certain

engines, cannot be taken into account because the droplet is statically hanged. The suspended method

cannot be applied to droplet streams with different spacing parameters [26]. Another approach is to employ

sessile droplets to measure the evaporation by monitoring the surface regressions, e.g., via direct imaging or

interferometry [27], or even from the vapor gradient by phase measurement using interferometry [28]. Single

droplets can also be fixed to study their evaporation by other non-contact methods, such as optical levitation

[29, 30, 31]. Some experimental measurements of transient evaporation rate of individual moving fuel

droplets [14, 32, 33, 34, 35] and mono-disperse droplet streams [17, 36, 37, 38] have also been reported. The

experimental strategy can be classified into two categories. One is a Lagrangian strategy to track the droplet

absolute size from multiple samplings. For example, Marié et al. [35] measured the fast evaporation process

of a falling diethyl ether droplet by combining a high-speed Digital Holographic Particle Tracking Velocimetry

(DHPTV) system to track the size and rainbow refractometry to measure the temperature. This strategy

is suitable for relatively large size changes, which requires a fast evaporating droplet or long observation

times. The other strategy is to directly measure the size change (mass loss) caused by evaporation of a

single droplet. Actually, the size change can be regarded as the mass transfer of the evaporating/condensing

droplet with its surrounding, and thus is of crucial significance in the characterization of heat and mass

transfer of fuel droplet evaporation. MDRs of scattering [17, 30] or fluorescence [17, 29] are usually used for

precise identification of evaporation rate via size changes. Recently, PHase Interferometric Particle Imaging

(PHIPI) [14] was proposed to measure the absolute diameter, as well as the diameter changes (evaporation

rate), of single droplets by analyzing the time-resolved dynamic light scattering in the forward direction.

Rainbow refractometry [38, 39, 40, 41, 42, 43] is a method to simultaneously measure the refractive

index and diameter of a droplet by analyzing the light scattering around the rainbow angle. This technique

has been applied to determine other droplet parameters on which the refractive index depends, including

temperature [44, 45, 46, 47, 48, 49], and species composition and concentration [31, 50, 51, 52]. It was first

proposed in the form of the Standard Rainbow Technique (SRT) [39] to measure individual spherical droplets

or identical droplet streams only, because the rainbow pattern is highly sensitive to droplet sphericity and

small non-sphericity can bring about severe distortions [53, 54, 55]. In order to capture light scattering

of a single droplet in a spray and to avoid interference from other droplets, one droplet in the probe

volume is isolated using a small pinhole and a short exposure time. Later, the technique was adapted to

measure the average refractive index and size distribution of a dense droplet field with dispersed sizes, which

was realized by enlarging the pinhole size and extending the exposure time. This particular approach is

called Global Rainbow Technique (GRT) [40]. The rainbow signal in GRT integrates rainbows of a large

number of droplets, with the individual ripple structures being averaged out. This results in a smooth Airy

rainbow that counterbalances the sensitivity to droplet sphericity. Both SRT and GRT are point probe
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measurements defined by the pinhole. Recently, One-dimensional rainbow refractometry, which extends

the measurement volume to a one-dimensional line section, has been proposed and implemented with two

different configurations in both spatial [41] and Fourier domains [42]. One-dimensional rainbow refractometry

can be operated in both SRT [38, 42, 56] and GRT modes [41, 42]. Moreover, it is found that the phase

of rainbow is extremely sensitive to minute changes in droplet size and refractive index. The phase shift

of the ripple structures in rainbows of single droplets or mono-dispersed droplet streams can be recorded

with one-dimensional rainbow refractometry as droplets flow along the probed line section, and thus has

been applied to simultaneously measure droplet refractive index, size and their changes. The ripple phase

shifts with respect to nano-scale changes was also noticed by Sankar et al. [36] and Han et al. [57]. This

approach is named Phase Rainbow Refractometry (PRR) [38], since it uses the phase information of the

rainbow signal, in additional to the amplitude and frequency information that are used in traditional SRT

and GRT. We briefly introduced PRR with a proof-of-concept validation but without detailed description

[38].

Here we present a comprehensive investigation of the development of the PRR technique as well as its

application to simultaneously measure droplet temperature via refractive index, diameter, and diameter

changes and thereafter evaporation rate of spherical evaporating droplets. We derive the measurement prin-

ciple of PRR (Section 2.1), and then the data processing algorithm to retrieve the droplet refractive index,

size and size changes (Section 2.2). In Section 3 the PRR technique is tested and verified by simulated

rainbow images using rigorous Generalized Lorenz-Mie Theories (GLMT). Finally, we present two experi-

mental implementations of PRR for fuel droplets, demonstrating the technique’s capabilities for both single

droplets and continuous droplet streams (Section 4).

2. Phase rainbow refractometry (PRR)

2.1. Principle and derivation

The primary rainbow of a homogeneous and spherical droplet with a refractive index n respective to

its surrounding medium can be exactly described by light scattering theory [58, 59, 60], and expressed as

an infinite series which integrates all the scattering processes. Reformulating the scattering coefficients,

the Lorenz-Mie light scattering can be decomposed into different processes analogous to the view point of

geometric optics and equivalently noted as Debye series with different orders p [61, 62], e.g., reflection (p = 0,

which is computed together with diffraction (p = −1) for numerical convergence), transmission (p = 1)

and refractions with different sequences of inner reflection (p = 2, 3, 4, ...). Generally, the primary rainbow

comprises two major scattering processes, i.e., refraction with one internal reflection (p = 2) and the external

reflection (p = 0), as illustrated in Fig. 1. The refracted outgoing wave experiencing one reflection at the

inner droplet surface has a cubic phase wavefront. Consequently, its interference produces an Airy rainbow,
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which is characterized by a main rainbow peak with markedly enhanced intensity and supernumeraries with

decreasing intensities. The first rainbow angle [58], which corresponds to the Descartes ray undergoing the

minimum angle of deviation (deflection), is

θrg = 4 arccos

(
1

n

√
4− n2

3

)
− 2 arcsin

(√
n2 − 1

3

)
. (1)

According to Eq. 1, the rainbow position is determined by the droplet refractive index but not affected

by droplet size, therefore permitting refractive index measurement from the rainbow angle in rainbow re-

fractometry. The external reflection (p = 0) at droplet surface with a coherent monochromatic laser beam

illumination is much weaker than the refracted light (p = 2) around the rainbow angle, and its interference

with the refraction (p = 2) generates the ripple fringes, which have a lower amplitude and higher frequency

than the Airy structures and thus are superimposed on the Airy peaks. In some special cases, the scattered

light of higher orders could also have a comparable intensity around the primary rainbow angle, and then

its interference with the above two light waves should be considered. Omitting light scattered from other

orders in Debye series, the primary rainbow is described as

I2rb =
∣∣∣Up=0

Debye + Up=2
Debye

∣∣∣
2

= Up=2
DebyeU

p=2
Debye︸ ︷︷ ︸

Airy rainbow

+
(
Up=2

DebyeU
p=0
Debye + Up=2

DebyeU
p=0
Debye

)

︸ ︷︷ ︸
ripple structure

+ Up=0
DebyeU

p=0
Debye︸ ︷︷ ︸

negligible

. (2)

The first term is the self-interference of the refracted light (p = 2), corresponding to the Airy rainbow. The

angular position of this term is sensitive to the refractive index, and thus it is used to measure the refractive

index in both standard and global rainbow refractometry. The second term is the interference between the

refraction and reflection, and contains the ripple structures. The third term is the reflection at the outer

surface with negligibly small and relatively flat intensity.

The optical paths of the two main parts of the rainbow light: the refraction (p = 2) and external reflection

(p = 0), are illustrated in Fig. 1. The two planes AF and IM in Fig. 1, which are perpendicular to the

incident and outgoing light respectively and both tangent to the droplet surface, are the reference input and

output planes, respectively. For the first order of refraction, the light (LAB) incident on the droplet surface

with an incident angle (θ1) has an optical path length

LAB = D (1− cos θ1)/2, (3)

where D is the droplet diameter. Then it is refracted into the droplet, travels to droplet inner surface with

a reflection at point C, and arrives at the surface point K. The optical path lengths of LBC and LCK are

equal as a result of symmetry

LBC = LCK = nD cos θ2, (4)
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Figure 1: Illustration of optical paths of the refracted light (p = 2) and the external reflection (p = 0) at rainbow angle θrg.

where θ2 is the refracted angle governed by Snell’s law

n =
sin θ1
sin θ2

, (5)

and the refractive index (n) is multiplied in the optical path length. The light is refracted out of the droplet

and propagates to the reference plane IM with an optical path length

LKM = D (1− cos θ1)/2. (6)

The external reflection incidents on the droplet surface at angle (θ3), which is parallel to and interferes with

the refracted light, has two equal optical path lengths, LFH and LHI,

LFH = LHI = D (1− cos θ3)/2. (7)

Thus, the optical path lengths of refraction and reflection are

Lp2 = LAB + LBC + LCK + LKM, (8)

and

Lp0 = LFH + LHI, (9)

respectively, and the optical path length difference between them is

Ld = Lp2 − Lp0 = D (− cos θ1 + 2n cos θ2 + cos θ3) . (10)

The subsequent phase difference between the reflection and refraction caused by the optical path length

difference is

φd =
2π

λ
Ld, (11)
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where λ is the incident wavelength in the surrounding medium. According to geometric optics, the total

deflection angle of the output ray is

θb = (p− 1)π + 2θ1 − 2p arcsin

(
sin θ1
n

)
, (12)

where p = 2 for the primary rainbow. And the relationship for the incident angle of reflection is

θ3 =
π

2
− θb

2
. (13)

Note that the phase retardant (φd) is a multivariate function dependent on refractive index (n), droplet

diameter (D) and the sampling scattering angle (θb). The phase variation along scattering angle (θb) leads

to the set of alternating bright and dark fringes, known as the ripple structures, and the angular spacing

can be obtained with the first Taylor expansion along θb

Φb = 2π

/
∂φd
∂θb

= λ

/
∂Ld

∂θb
=

2λ

D (sin θ1 + sin θ3)
. (14)

This relationship can also be interpreted as Young’s double slit interference [63], with the distance LIE

between the two parallel light from the refracted and reflected glare points of [D (sin θ1 + sin θ3)/2].

Without loss of generality, let us consider Descartes’ ray at the rainbow angle (θb = θrg), in which the

incident angle (θ1 = θ1,rg) is

cos (θ1,rg) =

√
n2 − 1

3
. (15)

By substituting Eq. 1, 5, 12, 13, and 15 into Eq. 11 and 14, we can get the angular spacing between the

fringes at the rainbow angle

Φrg =
33/2λn2

D (2 + n2)
√

4− n2
. (16)

According to Eq. 16, the angular spacing of the ripples is inversely proportional to the droplet size, and

thus can be used for droplet sizing, which resembles the IPI/ILIDS technique. The phase difference between

the two light waves can also be obtained

φd,rg =
2π

λ
D

(
8 + 10n2

3n2

√
n2 − 1

3

)
. (17)

In Eq. 17, the phase difference is a linear function of droplet diameter. This means that the phase linearly

shifts with the droplet size change. Applying a deviation to Eq. 17 and rewriting the droplet size change

(∆D) to the left side, then we obtain

∆D = crg∆φd,rg, (18)

where the coefficient (crg) is

crg =
λ

2π

33/2n2

(8 + 10n2)
√
n2 − 1

. (19)
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Rainbow refractometry can retrieve the refractive index from the angular position of the Airy rainbow (the

first term of Eq. 2), and the droplet size from a combination of the Airy rainbow shape and the ripple

structures (the first and second terms of Eq. 2). Here, Eq. 18 reveals that the droplet size change can be

measured from the phase shift of the ripple structures (the second terms of Eq. 2). Compared with the

traditional rainbow refractometry, this technique extends the capability of droplet size change measurement

via phase shift analysis, and is called phase rainbow refractometry (PRR) hereinafter.

Figure 2: The ratio crg/λ is monotonically decreasing over the range of refractive indices that are relevant for liquid fuel

droplets.

The PRR technique has the following distinguishing merits for the droplet size change measurement.

• Linear response: In the Eq. 18, the size change (∆D) presents a linear relationship with the phase shift

angle (∆φd,rg). This is remarkable because the formation of rainbow is a highly non-linear process,

especially for the Airy rainbow and ripple structures.

• High sensitivity: The coefficient crg is in the order of one tenth of the wavelength (λ) for common

liquids. As shown in Fig. 2, the coefficient decreases with refractive index, with values from about

0.068 at n = 1.3 to about 0.054 at n = 1.5. Moreover, the resolution of phase shift angles could be

easily less than 0.1 radians. Thus, the resolution of the technique can be down to one hundredth of the

wavelength, i.e., several nanometres for the visible wavelength. The sensitivity can be also measured

by the changes of size parameter, x = πD/λ. The size parameter change ∆x can be down to about

0.06 for a size change (∆D) sensitivity of 10 nm at 532 nm light illumination. The sensitivity of PRR

is one order higher than that of MDR, which ranges between 0.6 and 0.8 for common liquids [16].

• Dynamic range: The size change linearly depends on the phase shift, and the accuracy of its retrieval

has nothing to do with the droplet size. Therefore the error and uncertainty in size measurement do
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not influence the size change measurement. Thus, this technique can be applied to a large range of

droplet size spanning from tens to hundreds of microns, as long as the rainbow signal is clearly visible.

2.2. Data processing algorithm

The inversion of the PRR signals involves two parts: to retrieve droplet refractive index and size via

an optimal fitting of the standard rainbow signal, and then to measure the phase shift between a pair of

ripple structures for the determination of droplet size change. Fig. 3 outlines the flow chart of the PRR

inversion algorithm. First, a pair of standard rainbow signals are selected from a PRR image, with one

being the reference (Ir,rb) and the other being the target (It,rb). Both droplet refractive index and size are

simultaneously inversed by iteratively searching the optimal fitting of the sampled rainbow signal with the

criterion of global minimization

arg min
n,D

|Irb (θ)− Ic,rb (n,D, θ)| ,

s.t. n ∈ [nmin, nmax] , D ∈ [Dmin, Dmax] .

(20)

The candidate rainbow Ic,rb (n,D, θ), is the light scattering around the rainbow angle and can be calculated

with different rainbow theories, e.g., Lorenz-Mie scattering theory [59], Debye series [61, 62] or Nussenzveig’s

complex angular momentum (CAM) theory [64, 65] which is a semi-classical scattering model of rainbows

with an accuracy comparable to the Debye series, but with a significantly higher computation efficiency.

The Brent’s method is adopted for the search optimization, to yield the optimized parameters (n, D) until

the residual is less than a preset threshold. The first part is the same as that of the traditional standard

rainbow refractometry.

Then, the Airy rainbow (Iar) of the retrieved droplet refractive index and diameter is calculated by taking

only the refraction (p = 2) into account. Note that the Airy rainbow can be computed with Debye series,

CAM theory or Airy theory. Although the rainbow signals calculated with the three theories have small

differences, using any of the three does not affect the measurement result. After that, the ripple structures

are obtained by subtracting the computed Airy rainbow from the rainbow samples

Ir,rp = Ir,rb − Iar,

It,rp = It,rb − Iar,
(21)

where Ir,rp and It,rp are the reference and target ripple structures, respectively. The phase shift between

the two ripples is determined from their cross power spectral density (CPSD) Γrt (f), which is calculated as

follows

Γrt (f) {Ir, It} = F [γrt] (f) = Art (f) exp [iφrt (f)] , (22)

where F is the Fourier transform, f is the angular frequency, and γrt = E
[(
Ir − Ir

) (
It − It

)]
is the cross

covariance function, with E the mathematical expectation and the overbar denoting the average. The
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amplitude spectrum (Art) of CPSD has the global largest peak at the coherent frequency (fc). The value

of the phase spectrum at their significantly coherent frequency, φrt (fc), is the phase lag between the two

ripples. Hence, the phase shift (∆φd,rg) can be evaluated

∆φd,rg = φrt (fc) , with arg max
fc

Art (fc) . (23)

Substituting the measured phase shift (∆φd,rg) and refractive index (n) into Eq. 18, yields the size change

(∆D). Then the transient droplet evaporation rate can be experimentally determined

ke =

[
(D + ∆D)

2 −D2
]

∆t
=

2D∆D

∆t
+ o

(
∆D2

∆t

)
, (24)

where the term o
(
∆D2

/
∆t
)

is negligible and thus omitted.

Figure 3: Flow chart of data processing of PRR to measure droplet refractive index, size and size changes simultaneously.

It is worth mentioning that the coherent frequency actually is the frequency of the ripples, and it

can be converted to the fringe spacing with the relationship, Φrg = 2π/fc. Applying the obtained fringe

spacing and refractive index to Eq. 14, the droplet size can also be obtained. This algorithm by counting
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fringe frequency/spacing is popular in IPI/ILIDS. It is not necessarily performed because the droplet size is

optimally evaluated together with refractive index.

3. Simulation validation

The phase rainbow refractometry is first theoretically tested. Spherical and homogeneous droplets are

studied, and the light scattering of droplets under laser sheet illumination is rigorously modeled with Gen-

eralized Lorenz-Mie Theories (GLMT) [59], with beam coefficients to model the effects of the laser sheet,

which usually is an elliptical Gaussian beam in experiments. The elliptical Gaussian beam is linearly polar-

ized in the y direction, and has a beam waist (ωx, ωy) of (1 mm, 25 mm). Previous investigations show that

the light scattering can be safely regarded as that under plane wave illumination if the beam waist is much

larger than droplet size (usually about five times of the droplet) [59]. In addition, the absolute intensity

of droplet light scattering at off-axis positions decreases, as a result of the light power decreasing with the

distance from the optical axis in a Gaussian beam, but this effect does not affect the light scattering pattern.

In order to ease the data processing, the droplet is placed at the beam waist center in all the simulations to

eliminate the effect of intensity drop.

Table 1: List of simulation parameters for the nine different test cases.

case liquid n Dmin (µm) Dmax (µm)

1 water 1.333 50 50.6

2 water 1.333 100 100.6

3 water 1.333 150 150.6

4 ethanol 1.360 50 50.6

5 ethanol 1.360 100 100.6

6 ethanol 1.360 150 150.6

7 octane 1.400 50 50.6

8 octane 1.400 100 100.6

9 octane 1.400 150 150.6

The light scattering of the reflection (p = 0) and second refraction (p = 2) around the primary rainbow

angle is calculated in the framework of Debye series. Light scattering of other orders is not taken into

account because their influences at this angle are negligible. Table 1 lists the droplet parameters of the nine

simulations. In each case, the droplet retains its refractive index, while changes its diameter. Droplets of

three liquids, that are, water (n = 1.333), ethanol (n = 1.360) and octane (n = 1.400), are simulated to

study the effect of refractive index. For each liquid, three different diameters, i.e., 50 µm, 100 µm and 150
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µm, are investigated while droplet diameters change 600 nm with a step of 5 nm. Fig. 4 exemplifies the

simulated PRR images of case 2, 3 (water), 6 (ethanol) and 9 (octane). The light intensity is normalized

into 8-bit gray images which represent the exact light scattering according to Lorenz-Mie theory, with the

exception of the periodical patterns of morphology-dependent resonances (MDR) which were ignored. MDR

is a highly nonlinear process at some specific droplet diameters, and its absence facilitates the measurement

of PRR.

In the image of Fig. 4(a), the main peak and the first supernumerary bow of the Airy rainbow as well as

the superimposed ripple structures are observed. A comparison of Fig. 4(a) with Fig. 4(b) shows that the

angular spacing between ripple fringes of 100 µm droplet is larger than that of 150 µm droplet, exemplifying

the decrements of the angular span of main Airy peak and ripple fringe spacing with droplet size. Comparing

Fig. 4(b) with Fig. 4(c) and 4(d), it is found that the rainbow position shifts, e.g., from about 138◦ for

water to 142◦ for ethanol. The ripple structures are tilted as the size changes, but the angular spacing

between the fringes remains unchanged for each droplet, therefore the ripples are parallel. The degrees of

inclination are different, and fringes of water are steeper than those of octane. This is because the coefficient

(crg) decreases with the refractive index, as shown in Fig. 2. Comparing two rainbow signals for octane

droplets with sizes of 100 µm and 100.04 µm (Fig. 5(a)) it is apparent that the ripple is significantly shifted

as a result of the 40 nm size change, although the positions and amplitudes of the Airy rainbows are almost

unchanged. The two simulated rainbow signals are processed with the aforementioned inversion algorithm,

yielding solutions for droplet refractive index and diameter of 1.3297 and 99.7 µm, respectively. The optimal

fitting (Fig. 5(b)) is in good agreement with the simulated rainbow signal with both the Airy rainbow and

the ripple fringes demonstrating the high accuracy of the inversion process. Inversions of the nine test cases

show that the uncertainty on the refractive index is in the fourth digit (i.e., ±0.0002), and approximately

±1 µm for the droplet diameter.

According to Eq. 21, ripple structures are obtained by subtracting Airy rainbows from rainbow signals.

Fig. 5(c) compares a pair of ripple structures obtained from the two rainbow signals in Fig. 5(a). Ripples

in a pair appear almost the same in amplitude and frequency for both droplets, and exhibit an obvious

phase shift. The CPSD of the ripple pair in Fig. 5(c) is shown in Fig. 5(d), with the coherent and phase

spectra plotted in the lower and upper parts, respectively. The phase spectrum is quite stable near the

global maximum of coherent spectrum with a slow varying rate, making phase shift measurement robust

and accurate. The phase shift angle of each ripple signal with respect to the reference ripple signal, i.e., the

first row of PRR image, is evaluated, and the profile is shown in Fig. 5(e). The phase shift angle measured

with CPSD method spans the interval [ - π, π], and this causes the common 2π ambiguity. The raw phase

shift angle is corrected by using phase unwrapping, that is, adding ±2π at the jumps, yielding a smooth

profile as shown in Fig. 5(e). It is found that the phase shift angles of droplets of the same refractive index

almost overlap for all sizes. This is because the phase shift only depends on the relative size change ∆D but
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(a) (b)

(c) (d)

Figure 4: Simulated typical images of phase rainbow refractometry with the laser wavelength of 532 nm, with parameters listed

in Table 1. (a) Case 2. (b) Case 3. (c) Case 6. (d) Case 9.

is independent from the absolute size D. It is worth noting that the phase shift angle measured by CPSD

is the phase retardant between a ripple pair, but not the absolute phase shift angle in the light scattering

direction. With the unwrapped phase shift angles, then the size changes with respect to the size of the first

row are determined. The evaluated size changes agree well with the exact values.

The size change measured in nine cases are compared with the exact values, and errors of size change

measurement are shown in Fig. 6. The ∆D errors tend to increase gradually with size changes, with values

up to 4 nm at 600 nm size change. The tendency is quite linear, and the slopes of linear fitting range between

0.003 and 0.006, and the corresponding relative error is within 0.6%, demonstrating the high accuracy of

size change measurements with PRR. Note that the scatterers of ∆D errors closely cluster to each other
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Figure 5: Processing and results of simulated rainbow signals in phase rainbow refractometry. (a) A comparison of a reference

(D=100 µm) and a target (D=100.04 µm) rainbow signals of case 2. (b) Optimal fitting of the reference rainbow signal in (a),

with n and D of 1.3297 and 99.7 µm, respectively. (c) A comparison of a pair of ripple structures obtained from (a). (d) The

amplitude (lower part) and phase (upper part) spectra of CPSD of the ripple pair in (c). (e) The wrapped and unwrapped

phase shift angles retrieved from case 2 with CPSD. (f) The size changes measurements of all nine cases in table 1 and their

comparisons with the exact values.

and the same accuracy is achieved for the three types of liquids and sizes. This confirms the prediction

that the accuracy is not affected by the absolute droplet size. It is also observed that the ∆D errors can

exhibit periodic fluctuations which are superimposed on the linear increase with an amplitude of ±2 nm.

Besides the limited accuracy of data processing, these fluctuations may result from the discrepancy between

the phase shift model based on the simplified geometrical optics and the much more complex real light

scattering process of rainbows.

4. Experiments

The PRR technique is implemented with two configurations, and applied to characterize an evaporating

single droplet and a droplet stream.
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Figure 6: Errors of size change measurements in the nine simulations, with accuracy up to 0.6%.

4.1. Single droplet

Fig. 7 shows the schematics of experimental setup for size change measurements of single droplet with

PRR. A droplet-on-demand generator [66, 67] produces identical micron-sized droplets at a frequency of

4 Hz. The droplets were imaged with a microscope to monitor their sizes. Droplets were ejected upward

from the generator nozzle in order to prevent nozzle blocking and potential air locks in the nozzle. The

droplets had an initial velocity ranging from 0.5 to 1.0 m/s. The generated droplet was illuminated with a

continuous wave laser sheet with a wavelength (λ) of 532 nm, and the light scattering by the droplet around

the primary rainbow angle was collected by a 1.5 inch spherical lens. A high-speed linear CCD (Spyder3

CL, S3-24-01K40-00-R) was placed on the focal plane of the lens, i.e., 6.56 mm behind the lens. The linear

CCD has 1024×1 pixels with a pixel size of 14 µm. The imaging system in this configuration is a Fourier

imaging system, and has two advantages. First, the scattered light parallel to the x-z plane, i.e., ϕ = 90◦,

can reach the CCD and is recorded as the rainbow signal, while light at other angles, ϕ 6= 90◦, cannot be

captured by the CCD. This eliminates phase shift caused by changes in the azimuth (ϕ) angle. Second, the

scattered light propagating at the same tilt angle with respect to the optical axis is focused onto the same

position of the CCD, as illustrated in Fig. 7. This removes the effect of transversal motions. With these

two merits, the light scattering at the same angular positions with respect to the moving and evaporating

droplet is captured. The time-resolved light scattering by the droplet during its upward motion was recorded

at a frequency of 67 kHz, and each 1024 samples were fused into a PRR image with 1024×1024 pixels (8

bits). The refractive index of n-nonane was measured with an Abbe refractometer with a value of 1.4068

for a wavelength of 532 nm and a temperature of 21◦C. Experiments were conducted at room temperature

and ambient atmosphere at University of Bremen, and more details can be found in Ref. [49].

Fig. 8(a) displays an experimental PRR image of a single n-nonane droplet (please note that another
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Figure 7: Schematics of experimental configuration of PRR for single droplet measurement [49].

image of the same experiment set was already shown in Fig. 5(a) and Fig. 8 in Ref. [49] for comparison

to see the effect of droplet combustion). The amplitude of the rainbow signal first increases to a maximum

and then decreases along the height (y) direction. This is caused by the Gaussian distribution of the laser

sheet intensity. Fig. 8(b) shows the laser intensity profile obtained by averaging the light scattering of each

row of the PRR image. Its Gaussian distribution fitting is plotted as well. The non-uniform effect of the

incident laser sheet is compensated by dividing the fitted Gaussian laser sheet, resulting in the normalized

rainbow image shown in 8(c). Ripple fringes in both the main peak and first supernumerary bow are clearly

recorded. It is observed that there are horizontal fringes in the PRR image, and they are mainly caused by

MDRs and non-uniform laser beam. The ripple fringes are slightly tilted, indicating a phase shift and a small

size change. A pair of rainbow signals are shown in Fig. 8(d), and processed using the algorithm described

above. Fig. 8(e) illustrates a fitting of rainbow signal to inverse the refractive index and size. The retrieved

refractive index and diameter has a mean value of 1.4066±0.0003 and 136.7±0.2 µm, respectively, as plotted

in Fig. 8(f), and correspondingly the mean droplet temperature is 20.75 ◦C. The error values in refractive

index measurement (average 0.0002) are consistent with the ones in simulations. While the measurement

errors in droplet size are smaller than those in simulations, and this can be explained by the fact that prior

knowledge on droplet size obtained from microscope imaging is used in inversion. Then the ripple fringes

are retrieved and plotted in Fig. 8(g). The phase shift angle is determined using the CPSD method, and

then is used for the size change measurement, as the results of Fig. 8(a) shown in Fig. 8(h). Results of

size change measurements of fifty PRR droplets are shown in Fig. 8(i). The droplet size decreases with
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Figure 8: PRR signals of single n-nonane droplets. (a) PRR image of a n-nonane droplet [49]. (b) Intensity profile of the

illuminating laser sheet and its Gaussian distribution fitting. (c) Corrected PRR image by compensating laser beam profile,

with almost uniform amplitude in rainbow signals. (d) A comparison of two rainbow signals of a single droplet with an interval

of 2.24 ms. (e) Inverse process yielding optimized fitting of rainbow signal, with refractive index and size of 1.4066 and 136.7 µm.

Airy rainbow of the inversed parameters is also computed. (f) Results of temperature/refractive index and size measurements

on fifty sampled droplets. The relationship between n-nonane droplet temperature and refractive index was calibrated in [49].

(g) Illustration of phase shift between the two ripples obtained from (d). (h) Phase shift angles as well as the corresponding

size changes obtained from (a). (i) Size changes of the sampled fifty single droplets and the evaporation rate evaluated from

D2-law fitting.

time as a result of evaporation. It is observed that there is a slight discontinuity in the size change at about

1.5 ms for all the studied droplets. Except the effects of other high orders of light scattering and MDR,
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this could be partially caused by systematic uncertainty, i.e., non-uniformity of laser sheet, aberrations in

imaging system, interferences with droplet light scattering under other illuminations (laser reflections from

smooth surfaces), etc. Yet this discontinuity does not hinder the accurate evaluation of droplet evaporation

rate. As shown in Fig. 8(i), the D2-law model is employed to fit the measurements, and the evaporation

rate is retrieved with a value of -3.6×10−9 m2/s.

The evaporation rate of the moving n-nonane droplet was theoretically calculated and then compared

with the experiments, using the classical Maxwell and Stefan-Fuchs model [1]

kt = 4Dv
ρg
ρl

Sh ln (1 +BM) , (25)

where Dv is the diffusion coefficient of the n-nonane vapor, and is evaluated by a temperature dependent

formula suggested by Fuller’s method (Eq. 10 in [68]), with a value of 5.65×10−6 m2/s. The ρg and ρl are

the densities of gas (a mixture of vapor and air) surrounding the droplet and droplet liquid, respectively.

Sh is the Sherwood number and calculated with the correlation suggested by Kalmala et al. [71]

Sh = 2.009 + 0.514Re1/2Sc1/3. (26)

In Eq. 26, Re is the Reynolds number

Re =
uD

ν
, (27)

where u is the relative velocity of the gas with respect to the droplet and ν is the kinematic viscosity of the

vapor. The Schmidt number Sc is

Sc =
ν

Dv
. (28)

The Spalding mass transfer number BM is

BM =
(ρvs − ρv∞)

ρg
, (29)

where ρvs and ρv∞ are the mass densities of the saturated vapor at the droplet surface and at an infinite

distance from the droplet, respectively, and ρv∞ is regarded as zero. All the parameters used for evaporation

rate calculation are temperature dependent.

The theoretical evaporation rate of the single moving n-nonane droplet is obtained with a value of

kt=-4.1×10−9 m2/s. This is in good agreement with the experimental evaporation rate measured by PRR

(ke=-3.6×10−9 m2/s), suggesting that the PRR technique can be a reliable and accurate instrument to

measure droplet evaporation rate.

4.2. Droplet stream

In addition to single droplets in the above subsection, droplet streams are also tested with another

PRR system. This PRR system was implemented with a one-dimensional rainbow refractometry system, as
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schematically shown in Fig. 9. Fig. 9 displays the side and top views of the optical layout. A mono-dispersed

droplet stream of n-heptane with size of 100 µm was generated by a droplet generator with an upward speed

of about 5 m/s. A laser sheet, whose wavelength was 532 nm, illuminated the droplet stream, and was

scattered by droplets. The light scattering was collected by the first lens at a distance of 278 mm with a

focal length of 150 mm. The light then passed through a horizontal slit located at the focal plane of the first

lens with a width of 1 mm. Similar to the above experiment on single droplet, the first lens and horizontal

slit composed a one dimensional filter, and filtered out light scattering without perpendicular incidence in

the y − z plane. A second slit, which was vertically orientated, was placed at the image plane of the line

section probe volume in order to define the measurement volume. However, this second slit was not strictly

essential in our work because the droplet stream was perfectly vertical. The second lens with a focal length

of 150 mm conjugated the front surface of the first lens onto the CCD plane, and light scattering of droplets

at different heights were directed to and captured by different rows of the CCD sensor (2048×2048 pixels

with a pitch of 7.4 µm). One advantage of this configuration is that it permits a direct calibration of the

2D relationship between the pixels of the CCD image and the absolute scattering angles. This calibration is

essential to inverse the droplet stream parameters accurately. A more detailed description of the calibration

procedures can be found in Ref. [42].

Figure 9: Schematic of one-dimensional phase rainbow imaging system in the y − z and x− z planes [42].

A typical one-dimensional rainbow image of the droplet stream is shown in Fig. 10(a). Two Airy rainbow

bows, i.e., the primary peak and the first supernumerary, are recorded and displayed. The ripple structures

superimposed inside both peaks are also observed, almost as clearly as for the single droplet image in Fig.

8(a). This demonstrates that the droplets in the stream are almost perfectly identical in both morphology

and trajectory. Otherwise the overlapping of rainbow signals of the sampled 1240 droplets would smooth the

ripple structures out, leaving only the Airy rainbow aparent, as in the global rainbow technique. Since the
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Figure 10: Analysis of the evaporation of a stream of n-heptane droplets by Phase Rainbow Refractometry. (a) One-dimensional

PRR image of the droplet stream. (b) Inversion of the rainbow signal to retrieve the refractive index (n=1.3943) and diameter

(99.6 µm). (c) Evolution of refractive index with height, with the standard deviations represented by the error bars. (d)

Statistical droplet diameter variation of 100 rainbow images, with change rate of 14.3±0.2 nm/mm.

rainbow signals in Fig. 10(a) are almost the same as that in Fig. 8(a), the droplet stream can be assumed

as a single droplet in the inverse processing. As shown in Fig. 10(a), the rainbow signal intensities along

the vertical axis are affected by the location of the droplet within the laser sheet. Hence the intensity profile

of the laser sheet was evaluated to normalize the recorded rainbow image, using the same procedure as the

one described in the previous subsection. Individual rainbow signals were extracted from the image using

the average of eight consecutive pixel rows, and the averaging window was shifted with a step of four rows

to generate the following rainbow. This process resulted in 101 pairs of signals available for processing in

each PRR image. Fig. 10(b) shows a typical experimental rainbow signal, and illustrates its inversion to

retrieve the optimal droplet refractive index and diameter, with values of 1.3943 and 99.6 µm respectively.

The inversed rainbow fits the experimental rainbow well, with the primary and first supernumerary peaks

of the Airy rainbow agreeing well in both angular position and intensity profile. The angular positions and

frequency of the ripple structures also correspond well.

Despite the excellent overall agreement, we also note some small discrepancies between the experimental

and inversed rainbows in Fig. 10(b), as highlighted by the dashed ellipse where the first zero point of
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the Airy function and the rainbow should be close to zero. Besides digital noise and aberrations in the

imaging system, two factors mainly account for this phenomenon. Firstly, the sampled droplets are not

perfectly identical. Minute variations in droplet size cause a phase shift in the ripple structure, and the

averaging of the sampled with such phase shifts tends to flatten out the ripple oscillations, reducing the

ripple amplitude but also increasing the intensity around the trough position (zero point). Secondly, the

interference between the light scattered by neighboring droplets may contribute to non-zero intensities. Since

PRR is an out-of-focus imaging system, the light field captured by the camera sensor is an interferometric

summary of the light scattering by the droplets in the stream, and the interference among droplets generates

fringes as those of Fourier Interferometric Imaging (FII) [69]. In the stream, droplets are equally spaced,

and thus the interferometric fringes mainly appear in the vertical direction. The frequencies of these FII

fringes are inversely proportional to the droplet spacing. The narrow horizontal slit only allows interference

among closely-located droplets. These three mechanisms dramatically reduce the effect of interferometric

fringes, which are flattened by the integral of light field over the exposure time and disappear in the PRR

image. Another collaborative evidence supporting this argument is the absence of the morphology dependent

resonances in the experimental rainbow image. The MDR patterns occur periodically at particular refractive

index and diameter. If the sampled droplets are exactly identical, the MDR patterns should be observed at

some rows of the recorded rainbow because the droplets vary continuously during their upward movements,

however not in Fig. 10(a). This is because the position of the MDR is not stable and then is masked by the

rainbow signals of other droplets.

One hundred PRR signals of the n-heptane droplet stream were processed to obtain the evolution of the

droplet refractive index and diameter with height (Fig. 10(c)). The refractive indices range between 1.3938

and 1.3956, with a mean value of 1.3950 and a standard derivation of 0.0002, with the accuracy almost

the same as those in simulations and single droplet experiments. Despite the uncertainty on the refractive

index measurement, the mean value from 100 PRR images exhibits an increasing trend with height, with a

gradient of 9.1×10−5 per millimeter. This increase in refractive index indicates that the droplet temperature

is changing along the upward motion. Since the refractive index of n-heptane is related to temperature with

a coefficient of 5.1×10−4 K−1 at 532 nm [70], the corresponding temperature change can be determined with

a value of -0.17 K/mm. The measured droplet diameter is 99.8±1.5 µm, and agrees well with the initial

droplet size of 100 µm according to the manufacturer. The deviation is larger than those in simulations and

single droplet experiments. Besides the possible tiny variations in initial droplet sizes, it is mainly attributed

to the FII feature of the recorded PRR image.

In Fig. 10(a), the ripple structures incline along the height (y) direction, and present an obvious phase

shift between the fringes. This is a result of the decrease of droplet diameter caused by evaporation. The

phase shift angle and associated size change of the droplet stream are determined with the aforementioned

scheme. First the Airy rainbow of the droplet stream is calculated with the above measured droplet refractive
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index and diameter, as exemplified in Fig. 5(b). Then the ripple structures are retrieved. The phase shift

angle of Fig. 10(a) is evaluated and then used to determine the size change. The phase shift angle increases

from top to bottom up by 2.6 radians, corresponding to a diameter decrease of 86 nm. Fig. 10(d) shows that

the diameter changes are very similar for all 100 PRR images, with a mean standard deviation of 1.8 nm.

This indicates that the droplets within the stream have undergone the same evaporation process. Fitting

the D2-law onto our measurements we obtain a diameter change rate of -14.3±0.2 nm/mm. This enables

the calculation of the evaporating rate as -1.43±0.02×10−8 m2/s.

As the monodisperse droplet stream moves upward, the droplets entrain the surrounding air and a flow

field is developed. This leads to a significant decrease of the relative velocity between the droplet and

the surrounding gas, especially at the upper region of the droplet stream [37]. Meanwhile, a vapor layer

surrounding the droplet stream trajectory also develops along the radial direction, with the thickness of

the vapor layer increasing with the distance from the nozzle, and with a partial pressure approaching the

saturated pressure [72, 73, 26]. Under these two effects, the forced convection induced by the relative speed

between the gas and droplet plays a limited and minor role in the radial transfer of vapor. Consequently,

the evaporation rate is mainly determined by the diffusion radially away from droplet surface to the ambient

gas. This means that the Sherwood number approaches 2 and the Reynolds number approaches zero when

applying Eq. 24 for the theoretical evaluation of the evaporation rate. The theoretical evaporation rate is

-1.59×10−8 m2/s, and is in good agreement with the experimental value. In this work both the theoretically-

derived and experimentally-measured evaporation rates for the droplet stream are much smaller than that

of an isolated droplet, and this observation is consistent with previous investigations [26, 74].

5. Conclusions

In this work we demonstrated the measurement principle, numerical validations, data processing algo-

rithm, and experimental implementations of Phase Rainbow Refractometry for the quantification of the

evaporation rate of liquid fuel droplets.

We validated the PRR technique by simulating several types of liquids and conditions, to show that

it can resolve droplet diameter changes down to several nanometers with an accuracy up to 0.6% for size

changes of hundreds of nanometers. These simulations were in agreement with the theoretical predictions.

The technique was then applied onto an evaporating isolated droplet as well as onto a droplet stream.

The nano-scale size changes and the transient evaporation rates were determined, and found to be in good

agreement with theoretical values.

In addition to measuring the temperature (refractive index) and diameter of homogeneous and spherical

droplets, PRR can directly yield their nano-scale size changes by resolving the phase shift of the time-resolved

ripple structures. This approach quantifies the size change directly, rather than through the tracking of
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absolute droplet diameters with time. The theoretical deviation of PRR reveals that the phase shift in

ripple structures linearly depends on the change of droplet diameter but is independent of the absolute

droplet size, and thus the measurement accuracy would not be affected by droplet size. The PRR technique

can be applied to a large range of applications that rely on droplet evaporation and condensation.
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[42] Wu Y, Promvongsa J, Wu X, Cen K, Gréhan G, Saengkaew S. One-dimensional rainbow technique using Fourier domain

filtering. Optics Express. 2015;23:30545-56.

[43] Yu H, Sun H, Shen J, Tropea C. Measurements of refractive index and size of a spherical drop from Gaussian beam

scattering in the primary rainbow region. Journal of Quantitative Spectroscopy and Radiative Transfer. 2018;207:83-8.

[44] van Beeck JPAJ, Zimmer L, Riethmuller ML. Global rainbow thermometry for mean temperature and size measurement

of spray droplets. Particle & Particle Systems Characterization. 2001;18:196-204.

[45] Hom J, Chigier N. Rainbow refractometry: simultaneous measurement of temperature, refractive index, and size of

droplets. Applied Optics. 2002;41:1899-907.
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[50] Wu X, Wu Y, Saengkaew S, Meunier-Guttin-Cluzel S, Gréhan G, Chen L, et al. Concentration and composition measure-

ment of sprays with a global rainbow technique. Measurement Science and Technology. 2012;23:125302.

[51] Ouboukhlik M, Saengkaew S, FournierSalaün MC, Estel L, Gréhan G. Local measurement of mass transfer in a reactive
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[59] Gouesbet G, Gréhan G. Generalized Lorenz-Mie Theories: Springer; 2011.

[60] Lock JA. Electromagnetic scattering of a plane wave by a radially inhomogeneous sphere in the short wavelength limit.

Journal of Quantitative Spectroscopy and Radiative Transfer. 2017;202:126-35.

[61] Li R, Han Xe, Jiang H, Ren KF. Debye series for light scattering by a multilayered sphere. Appl Opt. 2006;45:1260-70.

[62] Xu F, Lock JA, Tropea C. Debye series for light scattering by a spheroid. J Opt Soc Am A. 2010;27:671-86.

[63] Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light: Elsevier;

2013.

[64] Nussenzveig HM. High-Frequency Scattering by a Transparent Sphere. I. Direct Reflection and Transmission. Journal of

Mathematical Physics. 1969;10:82.

[65] Nussenzveig H. High-Frequency Scattering by a Transparent Sphere. II. Theory of the Rainbow and the Glory. Journal of

Mathematical Physics. 1969;10:125.

[66] Ulmke H, Wriedt T, Bauckhage K. Piezoelectric droplet generator for the calibration of particle-sizing instruments. Chem

Eng Technol. 2001;24:265-8.

[67] Riefler N, Wriedt T. Generation of monodisperse micron-sized droplets using free adjustable signals. Part Part Syst Char.

2008;25:176-82.
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