75 research outputs found

    Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units

    Get PDF
    An optimal capacity allocation of large-scale wind-photovoltaic- (PV-) battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net present cost (NPC) was calculated through hybrid iteration/adaptive hybrid genetic algorithm (HIAGA). The optimal capacity ratio among wind generator, PV array, and battery device also was calculated simultaneously. A simulation was conducted based on the wind-PV-battery unit in Zhangbei, China. Results showed that a wind-PV-battery unit could effectively minimize the NPC of power-generation units under a stable grid-connected operation. Finally, the sensitivity analysis of the wind-PV-battery unit demonstrated that the optimization result was closely related to potential wind-solar resources and government support. Regions with rich wind resources and a reasonable government energy policy could improve the economic efficiency of their power-generation units

    An Architecture Dynamic Modeling Language for Self-Healing Systems

    Get PDF
    AbstractAs modern software-based systems increase in complexity, recovery from malicious attacks and rectification of system faults become more difficult, labor-intensive, and error-prone. These factors have actuated research dealing with the concept of self-healing systems, which employ architectural models to monitor system behavior and use inputs obtaining therefore to adapt themselves to the run-time environment. Numerous architectural description languages (ADLs) have been developed, each providing complementary capabilities for architectural development and analysis. Unfortunately, few ADLs embrace dynamic change as a fundamental consideration and support a broad class of adaptive changes at the architectural level. The Architecture Dynamic Modeling Language (ADML) is being developed as a new formal language and/or conceptual model for representing dynamic software architectures. TheADML couple the static information provided by the system requirements and the dynamic knowledge provided by tactics, and offer a uniform way to represent and reason about both static and dynamic aspects of self-healing systems. Because the ADML is based on the Dynamic Description Logic DDL, architectural ontology entailment for the ADML languages can be reduced to knowledge base satisfiability in DDL

    Transient activation of mucosal effector immune responses by resident intestinal bacteria in normal hosts is regulated by interleukin-10 signalling

    Get PDF
    Interleukin-10 (IL-10) is a key regulator of mucosal homeostasis. In the current study we investigated the early events after monoassociating germ-free (GF) wild type (WT) mice with an E. coli strain that we isolated previously from the cecal contents of a normal mouse housed under specific pathogen free (SPF) conditions. Our results show that IFN-γ secreted by mesenteric lymph node (MLN) cells from both IL-10 deficient mice and WT mice, stimulated ex vivo with E. coli lysate, was dramatically higher at day 4 after monoassociation compared to IFN-γ secreted by cells from GF mice without E. coli colonization. Production of IFN-γ rapidly and progressively declined after colonization of WT but not IL-10 deficient mice. E. coli lysate-stimulated WT MLN cells also produced IL-10 that peaked at day 4 and subsequently declined, but not as precipitously as IFN-γ. WT cells that express CD4, CD8, and NKp46 produced IFN-γ; WT CD4-positive cells and B cells produced IL-10. Recombinant IL-10 added to E. coli-stimulated MLN cell cultures inhibited IFN-γ secretion in a dose-dependent fashion. MLN cells from WT mice treated in vivo with neutralizing anti-IL-10 receptor antibody produced more IFN-γ compared with MLN cells from isotype control antibody-treated mice. These findings show that a resident E. coli that induces chronic colitis in monoassociated IL-10 deficient mice rapidly but transiently activates the effector immune system in normal hosts, in parallel with induction of protective IL-10 produced by B cells and CD4(+) cells that subsequently suppresses this response to mediate mucosal homeostasis. This article is protected by copyright. All rights reserved

    A Trusted-based Cloud Computing Virtual Storage System and Key Technologies

    Get PDF
    With the popularity of Cloud Computing, people become incresingly concern about security problems, especially the data security, which has become the biggest obstacle for the development of Cloud Computing. In order to protect confidentiality and integrity of user data in Cloud Computing, this paper firstly studies the relevant research works in fields of trusted computing and Cloud Computing data protection and secondly introduces the concept of trusted into Cloud Computing data protection, presents the concept of Trusted Virtual Block Storage Device (TVBSD) and designs the Trusted Cloud Computing Virtual Storage System (TCCVSS). And then, the key technologies such as isolation, block device encryption and two-way authentication are expounded in this paper. Finally, the result of experiments shows that the system and the related technologies can not only effectively ensure the security of user data, but also control the consequent performance overhead in a proper range

    Clinical significance of circulating tumor cells in predicating the outcomes of patients with colorectal cancer

    Get PDF
    Background: Relapse and metastasis of patients with Colorectal Cancer (CRC) is the major obstacle to the long-term life of patients. Its mechanisms remain defined. Methods: A total of 48 CRC patients were enrolled and 68 samples were obtained from the peripheral blood of patients before or after treatments in this study. Twenty non-cancer patients were also detected as a negative control. Circulating Tumor Cells (CTCs), including Epithelial CTCs (eCTCs), Mesenchymal (MCTCs), and epithelial/mesenchymal mixed phenotypes (mixed CTCs), were identified by CanPatrolTM CTC enrichment and RNA in situ hybridization. The relationship between CTCs number and Progression-Free Survival (PFS) or Overall Survival (OS) was evaluated. Results: Thirty-four of 48 patients (70.8%) were found to have positive CTCs. Total CTCs and MCTCs in the post-treatment had a significant correlation PFS and OS. When total CTCs or MCTCs in 5 mL blood of patients were more than 6 CTCs or 5 MCTCs, PFS of the patients was significantly shorter (p < 0.05) than that in patients with less than 6 CTCs or 5 MCTCs. The patients with > 5 CTCs count changes were found to exhibit poor PFS and OS rates (p < 0.05). Conclusion: Total CTCs and MCTCs number detection in patients with colorectal cancer was very useful biomarker for predicting the prognosis of patients. Higher CTCs or MCTCs had poorer PFS and OS rates

    Wastewater Sequencing Reveals Community and Variant Dynamics of the Collective Human Virome

    Get PDF
    Wastewater is a discarded human by-product, but its analysis may help us understand the health of populations. Epidemiologists first analyzed wastewater to track outbreaks of poliovirus decades ago, but so-called wastewater-based epidemiology was reinvigorated to monitor SARS-CoV-2 levels while bypassing the difficulties and pit falls of individual testing. Current approaches overlook the activity of most human viruses and preclude a deeper understanding of human virome community dynamics. Here, we conduct a comprehensive sequencing-based analysis of 363 longitudinal wastewater samples from ten distinct sites in two major cities. Critical to detection is the use of a viral probe capture set targeting thousands of viral species or variants. Over 450 distinct pathogenic viruses from 28 viral families are observed, most of which have never been detected in such samples. Sequencing reads of established pathogens and emerging viruses correlate to clinical data sets of SARS-CoV-2, influenza virus, and monkeypox viruses, outlining the public health utility of this approach. Viral communities are tightly organized by space and time. Finally, the most abundant human viruses yield sequence variant information consistent with regional spread and evolution. We reveal the viral landscape of human wastewater and its potential to improve our understanding of outbreaks, transmission, and its effects on overall population health

    Epigenetic perturbations in the pathogenesis of mustard toxicity; hypothesis and preliminary results

    Get PDF
    Among the most readily available chemical warfare agents, sulfur mustard (SM), also known as mustard gas, has been the most widely used chemical weapon. SM causes debilitating effects that can leave an exposed individual incapacitated for days to months; therefore delayed SM toxicity is of much greater importance than its ability to cause lethality. Although not fully understood, acute toxicity of SM is related to reactive oxygen and nitrogen species, oxidative stress, DNA damage, poly(ADP-ribose) polymerase (PARP) activation and energy depletion within the affected cell. Therefore several antioxidants and PARP inhibitors show beneficial effects against acute SM toxicity. The delayed toxicity of SM however, currently has no clear mechanistic explanation. One third of the 100,000 Iranian casualties are still suffering from the detrimental effects of SM in spite of the extensive treatment. We, therefore, made an attempt whether epigenetic aberrations may contribute to pathogenesis of mustard poisoning. Preliminary evidence reveals that mechlorethamine (a nitrogen mustard derivative) exposure may not only cause oxidative stress, DNA damage, but epigenetic perturbations as well. Epigenetic refers to the study of changes that influence the phenotype without causing alteration of the genotype. It involves changes in the properties of a cell that are inherited but do not involve a change in DNA sequence. It is now known that in addition to mutations, epimutations contribute to a variety of human diseases. Under light of preliminary results, the current hypothesis will focus on epigenetic regulations to clarify mustard toxicity and the use of drugs to correct possible epigenetic defects

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Molecular Toxicology of Substances Released from Resin–Based Dental Restorative Materials

    Get PDF
    Resin-based dental restorative materials are extensively used today in dentistry. However, significant concerns still remain regarding their biocompatibility. For this reason, significant scientific effort has been focused on the determination of the molecular toxicology of substances released by these biomaterials, using several tools for risk assessment, including exposure assessment, hazard identification and dose-response analysis. These studies have shown that substances released by these materials can cause significant cytotoxic and genotoxic effects, leading to irreversible disturbance of basic cellular functions. The aim of this article is to review current knowledge related to dental composites’ molecular toxicology and to give implications for possible improvements concerning their biocompatibility
    corecore