Transient activation of mucosal effector immune responses by resident intestinal bacteria in normal hosts is regulated by interleukin-10 signalling

Abstract

Interleukin-10 (IL-10) is a key regulator of mucosal homeostasis. In the current study we investigated the early events after monoassociating germ-free (GF) wild type (WT) mice with an E. coli strain that we isolated previously from the cecal contents of a normal mouse housed under specific pathogen free (SPF) conditions. Our results show that IFN-γ secreted by mesenteric lymph node (MLN) cells from both IL-10 deficient mice and WT mice, stimulated ex vivo with E. coli lysate, was dramatically higher at day 4 after monoassociation compared to IFN-γ secreted by cells from GF mice without E. coli colonization. Production of IFN-γ rapidly and progressively declined after colonization of WT but not IL-10 deficient mice. E. coli lysate-stimulated WT MLN cells also produced IL-10 that peaked at day 4 and subsequently declined, but not as precipitously as IFN-γ. WT cells that express CD4, CD8, and NKp46 produced IFN-γ; WT CD4-positive cells and B cells produced IL-10. Recombinant IL-10 added to E. coli-stimulated MLN cell cultures inhibited IFN-γ secretion in a dose-dependent fashion. MLN cells from WT mice treated in vivo with neutralizing anti-IL-10 receptor antibody produced more IFN-γ compared with MLN cells from isotype control antibody-treated mice. These findings show that a resident E. coli that induces chronic colitis in monoassociated IL-10 deficient mice rapidly but transiently activates the effector immune system in normal hosts, in parallel with induction of protective IL-10 produced by B cells and CD4(+) cells that subsequently suppresses this response to mediate mucosal homeostasis. This article is protected by copyright. All rights reserved

    Similar works