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Summary

Interleukin-10 (IL-10) is a key regulator of mucosal homeostasis. In the cur-

rent study we investigated the early events after monoassociating germ-free

(GF) wild-type (WT) mice with an Escherichia coli strain that we isolated

previously from the caecal contents of a normal mouse housed under speci-

fic pathogen-free conditions. Our results show that interferon-c (IFN-c)

secreted by mesenteric lymph node (MLN) cells from both IL-10 deficient

mice and WT mice, stimulated ex vivo with E. coli lysate, was dramatically

higher at day 4 after monoassociation compared with IFN-c secreted by cells

from GF mice without E. coli colonization. Production of IFN-c rapidly and

progressively declined after colonization of WT but not IL-10-deficient

mice. The E. coli lysate-stimulated WT MLN cells also produced IL-10 that

peaked at day 4 and subsequently declined, but not as precipitously as IFN-

c. WT cells that express CD4, CD8 and NKp46 produced IFN-c; WT CD4-

positive cells and B cells produced IL-10. Recombinant IL-10 added to

E. coli-stimulated MLN cell cultures inhibited IFN-c secretion in a dose-

dependent fashion. MLN cells from WT mice treated in vivo with neutraliz-

ing anti-IL-10 receptor antibody produced more IFN-c compared with

MLN cells from isotype control antibody-treated mice. These findings show

that a resident E. coli that induces chronic colitis in monoassociated IL-10-

deficient mice rapidly but transiently activates the effector immune system

in normal hosts, in parallel with induction of protective IL-10 produced by

B cells and CD4+ cells that subsequently suppresses this response to mediate

mucosal homeostasis.
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Introduction

The gastrointestinal tract harbours a complex set of

microbes, particularly in the large intestine, which is

inhabited by approximately 10–100 trillion bacteria com-

prised of more than 1000 different species.1–5 Bacteria

colonize the intestinal lumen after birth and interact with

the host through antigens and adjuvants that stimulate

either pathogenic or protective immune responses.1,6

Interleukin-10 (IL-10) is a regulatory cytokine that is

produced by a wide variety of cell types including T cells, B

cells, macrophages, dendritic cells and epithelial cells.7–12

This cytokine is a key inhibitor of antigen-presenting cell

function and so suppresses effector T-cell responses and

helps to maintain mucosal homeostasis.12–14 Interleukin-10

is associated with immunological tolerance and regulatory

T-cell responses.15–17 The critical role of IL-10 in maintain-

ing intestinal immune regulation is demonstrated by the

observation that conventionally housed IL-10-deficient and

IL-10-receptor-deficient mice spontaneously develop

chronic intestinal inflammation.18,19 In parallel, IL-10 pro-

duced by T cells is necessary for inhibition of colitis in

various murine colitis models.20 In addition to T cells, IL-

10-secreting B cells activated by resident bacteria induce

Abbreviations: GF, germ-free; IFN, interferon; IL, interleukin; IL-10R, interleukin-10 receptor; MLN, mesenteric lymph node;
SPF, specific pathogen free; WT, wild-type
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regulatory type 1 T cells, suppress effector T cells, and inhi-

bit colitis in several murine model systems.21,22 Soon after

IL-10-deficient mice became available, we re-derived them

into germ-free (GF) conditions and observed that the GF

cohort, unlike the conventional IL-10-deficient mice, did

not develop intestinal inflammation or activation of the

gut-associated immune system.23 These results demonstrate

the importance of resident intestinal microorganisms in the

development of intestinal inflammation in IL-10-deficient

mice.

Numerous publications report IL-10-mediated inhibi-

tion of intestinal inflammation and investigators have iden-

tified pivotal molecules in the IL-10 signalling

pathway;14,24,25 however, most of these studies focus on

chronic inflammation. Few have investigated the immune

response at very early time-points after exposure to resi-

dent intestinal bacteria. In a previous study,13 we examined

the early stages of immune activation in experiments

designed to determine the role of T cell-derived IL-10 com-

pared to antigen-presenting-cell-derived IL-10 in regulating

colitis. Our kinetic analysis of cytokine production after

adoptive transfer of T cells to specific pathogen-free (SPF)

immunodeficient hosts demonstrated the rapid induction

of interferon-c (IFN-c) in response to components of resi-

dent intestinal microorganisms. This response was subse-

quently down-regulated in the presence but not in

the absence of IL-10-producing antigen-presenting cells.

These results are particularly interesting because the adop-

tive transfer model permits evaluation of the parameters of

T-cell responses as they develop during homeostatic prolif-

eration. El Aidy et al.26,27 observed similarly rapid induc-

tion of cytokine gene expression after GF wild-type (WT)

mice were colonized with complex murine resident intesti-

nal microbiota. We now report results that confirm and

extend the previous studies, showing that IFN-c and IL-10

were both produced rapidly after GF WT mice were

monoassociated with a single intestinal resident bacteria

designated Escherichia coli NC101 that we isolated from the

caecum of an SPF WT mouse. Interferon-c subsequently

declined; IL-10 also declined, but not as precipitously as

IFN-c. The IFN-c is produced by CD4-positive, CD8-posi-

tive and NKp46-positive cells while CD4-positive cells and

B cells produce IL-10. In vitro addition of recombinant

murine IL-10 suppressed E. coli -induced IFN-c produc-

tion, while blocking the IL-10 receptor (IL-10R) in vivo

enhanced IFN-c production, confirming that IL-10 is

involved in down-regulating the early immune response to

a resident E. coli in normal hosts.

Materials and methods

Mice

Interleukin-10-deficient mice on a 129S6/SvEv back-

ground, and WT 129S6/SvEv mice were maintained in

GF conditions in flexible film isolators at the National

Gnotobiotic Rodent Resource Center at the University of

North Carolina, Chapel Hill and the Gnotobiotic Core of

the Center for Gastrointestinal Biology and Disease

(CGIBD) at North Carolina State University. We confirm

GF status each time we remove mice from isolators for

an experiment. All mice used were older than 8 weeks of

age. Mice were monoassociated with E. coli NC101 by

swabbing the mouth and anus with an overnight bacterial

culture and were subsequently euthanized at different

time-points after initial bacterial colonization. Animal use

protocols were approved by the University of North Car-

olina at Chapel Hill and the North Carolina State Univer-

sity Institutional Animal Care and Use Committees.

Bacterial strain and lysates

The murine E. coli strain designated E. coli NC101 was

originally isolated from WT mice housed in SPF condi-

tions. Lysates were prepared from E. coli cultures grown

in brain–heart infusion broth as described previously.28

Protein concentrations were determined using a standard

assay (Bio-Rad Laboratories, Hercules, CA) and sterility

of the lysates was confirmed by culturing on brain–heart
infusion agar plates. Lysates were divided into aliquots

and stored at �80°.

Mesenteric lymph node cell cultures

Mesenteric lymph nodes (MLN) were collected from

individual mice, teased gently and the cell suspension

was passed through a 40-lm filter (BD Falcon, Franklin

Lakes, NJ). Unseparated MLN cells (4 9 105 cells per

well) were stimulated with 1 or 10 lg/ml E. coli NC101

lysate or cultured in medium alone in 96-well flat-bot-

tom plates (Costar, Corning, NY) for 72 hr at 37° in a

humidified incubator with 5% CO2. Culture medium

was RPMI-1640 (Cellgro, Manassas, VA) supplemented

with 5% heat inactivated fetal calf serum, 2 mM L-gluta-

mine, 1 mM sodium pyruvate, 0�05 mM 2-mercaptoetha-

nol and 50 lg/ml gentamicin. Culture supernatants were

collected for cytokine analysis and frozen in aliquots at

�20°.
For evaluation of cytokine-producing cells, MLN cells

were stimulated overnight with 10 lg/ml E. coli NC101

lysate. Cells were then re-stimulated with 100 ng/ml PMA

(Sigma-Aldrich, St Louis, MO) plus 1 lg/ml ionomycin

(Tocris Bioscience, Minneapolis, MN) for 5 hr. Golgi

stop (BD Biosciences, San Diego, CA) was added during

the last 4 hr.

Recombinant IL-10 treatment and IL-10R blockade

To evaluate the effects of exogenous IL-10, recombinant

murine IL-10 (PeproTech, Rocky Hill, NJ) was added to
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MLN cultures at 0, 250 pg/ml, 500 pg/ml, 1000 pg/ml, or

2000 pg/ml.

To block IL-10 signalling in vivo, 0�5 mg per mouse of

anti-IL-10R-specific antibody (clone 1B1.3A; BioXCell,

West Lebanon, NH) or purified rat IgG1 isotype control

antibody (clone HRPH; BioXCell) was injected intraperi-

toneally 1 day before, 2 days after and 5 days after

monoassociation with E. coli NC101. Mice were eutha-

nized on day 7 after E. coli monoassociation. The MLN

cells were prepared and stimulated with E. coli NC101

lysate as described above.

Cytokine measurements

To measure the amount of IFN-c or IL-10 secreted by

stimulated MLN cells, ELISAs were performed by staff of

the Advanced Analytics Core of the CGIBD at the

University of North Carolina at Chapel Hill. The ELISA

sets for murine IFN-c (catalogue no. 551866) and murine

IL-10 (catalogue no. 555252) were from BD Biosciences.

Assays were performed according to the manufacturer’s

protocols. Cytokine levels were measured in triplicate

culture supernatants and amounts were determined by

comparison with standard curves generated by using the

appropriate recombinant cytokine.

Real-time polymerase chain reaction

Total RNA from transverse colon was extracted using an

RNeasy Mini Kit (Qiagen Sciences, Valencia, CA) follow-

ing the manufacturer’s instructions and treated with

amplification-grade DNase Ι (Qiagen Sciences). First-

strand complementary DNA was synthesized using a

Tetro cDNA Synthesis Kit (Bioline, Taunton, MA) and

treated with Ribonuclease H (Invitrogen, Carlsbad, CA).

Quantitative RT-PCR was performed on a QuantStudio 6

Flex Real-Time PCR System (Life Technologies, Carlsbad,

CA) using SYBR green (Bio-Rad) to quantify the gene

expression of IFN-c, IL-10, IL-1b and IL-6. Each sample

was analysed in triplicate and the results were normalized

to the housekeeping gene GAPDH.

Flow cytometry

Antibodies used to enumerate cell subsets directly after

MLN harvest were peridinin chlorophyll protein-labelled

anti-mouse CD4, phycoerythrin-labelled anti-mouse CD8,

or FITC-labelled anti-mouse CD45R/B220 (BD Bio-

sciences). Antibodies used to detect cell surface molecules

in intracellular cytokine detection experiments were phy-

coerythrin-labelled anti-mouse CD4, CD8, CD19, CD11b

and CD335 (NKp46). Alexa Fluor 488 labelled anti-IFN-c
or anti-IL-10 were used to enumerate cytokine-producing

cells (eBioscience, San Diego, CA). MLN cells were stimu-

lated for intracellular cytokine detection as described

above, collected and incubated with anti-CD antibodies

for 30 min at 4°. Cells were washed, then fixed and per-

meabilized using the BD Cytofix/Cytoperm Fixation/

Permeabilization Kit (BD Biosciences) according to the

manufacturer’s instructions before incubating with anti-

IFN-c, anti-IL-10, or isotype control antibody for 1 hr at

4°. Cells were washed and analysed on an LSRII flow

cytometer (BD Biosciences). We gated on the events for

analysis based on forward and side scatter characteristics

of viable cells. To determine the proportions of cytokine-

positive cells among cell subsets, we gated on the cell-

surface-marker-positive populations.

Data analysis

All statistics were performed using GRAPHPAD PRISM 5.0

software (GraphPad, San Diego, CA). We used two-tailed

Student’s t-tests for comparisons between two groups.

Comparisons between three or more experimental groups

were analysed using one-way analysis of varaince with

Tukey’s multiple-comparison post-test. P-values < 0�05
were considered significant.

Results

Kinetics of IFN-c production in E. coli NC101
monoassociated mice

To evaluate intestinal bacteria-induced immune responses

in the intestinal tract upon bacterial colonization, we used

129SvEv WT and IL-10-deficient mice that were born in

GF conditions and monoassociated with a non-patho-

genic murine strain of Escherichia coli, designated E. coli

NC101.28 Escherichia coli NC101 shares phylogenetic and

genomic characteristics with several human and canine

strains of adherent/invasive E. coli.29 However, our previ-

ous results show that this organism is not pathogenic

because inflammation does not develop in WT mice.28

At different time-points after monoassociation, we har-

vested MLN and stimulated the cells in vitro with bacterial

lysates containing components of E. coli NC101. We then

measured IFN-c and IL-10 secretion in culture super-

natants. As shown in Fig. 1, we found that IFN-c produced
by unfractionated MLN cells from both IL-10-deficient and

WT mice was dramatically higher at day 4 after coloniza-

tion compared with GF mice. The IFN-c remained consis-

tently high in supernatants of E. coli lysate-stimulated IL-

10-deficient MLN cells obtained at day 7 and 30 after

monoassociation, corroborating our previously published

results,28,30 whereas amounts of IFN-c rapidly declined

with time after colonization of WT mice (Fig. 1a,b). We

tested two different concentrations of E. coli NC101 lysate,

10 and 1 lg/ml, for in vitro re-stimulation. Results were

consistent for both doses (data for cells stimulated with

1 lg/ml not shown). We also evaluated IL-17 production
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in the supernatants of stimulated MLN cells and IL-12p40

production in colon explant cultures. Interleukin-17 secre-

tion by MLN cells from IL-10-deficient mice followed the

same kinetics after E. coli monoassociation as IFN-c; how-
ever, MLN cells from WT mice did not produce detectable

IL-17 (data not shown). Likewise, IL-12p40 in colonic cul-

ture supernatants from IL-10-deficient mice increased with

time after monoassociation but was undetectable in the

supernatants of colon tissue from WT mice (data not

shown).

We next investigated IFN-c mRNA expression in the

transverse colon of GF and E. coli monoassociated WT

mice. The IFN-c mRNA expressed in the transverse colon

showed the same pattern as IFN-c production in the super-

natants of bacterial lysate-stimulated WT MLN cells, with

significantly higher IFN-c mRNA levels 4 days after

monoassociation with E. coli compared with GF and lower

amounts at later time-points (Fig. 1c). Together, these data

show that IFN-c is produced in normal, WT mice at early

time-points in response to resident intestinal bacteria.

Kinetics of IL-10, IL-1b and IL-6 production in E. coli
NC101 monoassociated mice

Interleukin-10-mediated inhibition of IFN-c production

has been established in numerous model systems.12,31,32

Therefore, we explored IL-10 production in the same

kinetic study. We measured IL-10 secretion in supernatants

of E. coli lysate-stimulated unseparated MLN cells and IL-

10 mRNA expression in transverse colon from the same

monoassociated WT mice. We found that IL-10 secretion

in the supernatants was higher at day 4 after colonization

compared with GF levels and decreased thereafter (Fig. 2a).

Interleukin-10 mRNA expression in transverse colon from

WT mice showed the same patterns with higher levels of

IL-10 mRNA at day 4 after monoassociation compared

with GF mice, progressively decreasing at later time-points

(Fig. 2b). Together, these results show that IFN-c and IL-

10 are produced rapidly and concomitantly in normal hosts

upon bacterial monoassociation.

We also quantified IL-1b and IL-6 mRNA expression

in the transverse colon from monoassociated WT mice

(Fig. 3). The IL-1b mRNA expression was approximately

fourfold higher 4 days after colonization compared with

GF, then decreased at later time-points (Fig. 3a). Inter-

leukin-6 mRNA expression (Fig. 3b) was similar to IL-1b,
with fivefold higher levels at day 4 compared with GF fol-

lowed by a subsequent decline. These data show that like

IFN-c and IL-10, both IL-1b and IL-6 are activated

rapidly after monoassociation of normal mice with a sin-

gle non-pathogenic bacterial species, then are subse-

quently down-regulated.

Cell number and phenotype

While the total number of cells obtained from MLN of

E. coli monoassociated mice was significantly higher than

the number harvested from MLN of GF mice (Fig. 4c), the

proportions of CD4-positive cells, CD8-positive cells and B

cells in MLN of GF and E. coli monoassociated mice were

essentially the same (Fig. 4a), with the exception of a

slightly higher percentage of CD4-positive cells at 14 days

after colonization with E. coli. Therefore, the increased

amounts of IFN-c (Fig. 1b) and of IL-10 (Fig. 2a) secreted

by E. coli lysate-stimulated MLN cells obtained at day 4

after E. coli monoassociation is not the result of changes in
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Figure 1. Kinetics of interferon-c (IFN-c) production in 129SvEv wild-type (WT) and interleukin-10 (IL-10) -deficient mice monoassociated with

Escherichia coli NC101. (a) IFN-c production by unseparated mesenteric lymph node (MLN) cells from germ-free (GF) or E. coli NC101 monoas-

sociated IL-10-deficient mice, 129SvEv background. (b) IFN-c production by unseparated MLN cells from GF or E. coli NC101 monoassociated

129SvEv WT mice. MLN cells were stimulated in vitro with 10 lg/ml E. coli NC101 lysate. Supernatants were collected 72 hr later and IFN-c was

quantified by ELISA. (c) IFN-c mRNA expression in transverse colon of GF or E. coli NC101 monoassociated 129SvEv WT mice determined by

quantitative PCR. Copy number is normalized to GAPDH and expressed as fold change relative to GF mice. Each dot represents an individual

mouse analysed in either two independent experiments (GF or day 4, 7, 14, 30 WT mice or GF IL-10-deficient mice) or one experiment (IL-10-

deficient mice day 4, 7 and 30). Day after monoassociation is indicated on the x-axis. Data were analysed using one-way analysis of variance with

Tukey’s multiple-comparison post-test. P-values indicate statistically significant differences between IFN-c produced by E. coli NC 101 lysate-sti-

mulated MLN cells in (a) and (b) or IFN-c mRNA expressed in transverse colon in (b) from GF mice compared with mice at 4, 7, 14 or 30 days

after monoassociation with E. coli NC101. In addition, statistically significant differences in (b) 4-day versus 7-day P < 0�05, 4-day versus 14-day

P < 0�05, 4-day versus 30-day P < 0�001; in (c), 4-day versus 7-day P < 0�001, 4-day versus 14-day P < 0�01, 4-day versus 30-day P < 0�001.
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cell subset proportions among the fixed number of MLN

cells (4 9 105 per well) from GF and E. coli monoassoci-

ated mice that were stimulated in vitro.

Cell types that produce IFN-c and IL-10

Next we designed experiments to determine which types

of cells in MLN produce IFN-c and IL-10 after normal

mice are monoassociated with intestinal bacteria. We har-

vested MLN cells from WT mice monoassociated with

E. coli NC101 for 4 days and re-stimulated them with

E. coli lysate overnight, followed by a 5-hr stimulation

with ionomycin plus PMA. For comparison, we also eval-

uated MLN cells from GF WT mice stimulated according

to the same activation protocol. Representative intracellu-

lar cytokine analysis using MLN cells from E. coli

monoassociated mice (Fig. 5a) shows that a small propor-

tion of CD4+ cells and a higher proportion of CD8+ cells

produce IFN-c. Cells that express the NK cell and innate

lymphoid cell marker NKp4633,34 also produce IFN-c. IL-
10 production can be readily detected in cells that express

CD19; a smaller proportion CD4+ cells produce IL-10.

Interestingly, the potent activation signals provided by

in vitro stimulation with E. coli lysate followed by
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Figure 2. Kinetics of interleukin-10 (IL-10) production in 129SvEv wild-type (WT) mice monoassociated with Escherichia coli NC101. (a) IL-10

production by unseparated mesenteric lymph node (MLN) cells from germ-free (GF) or E. coli NC101 monoassociated 129SvEv WT mice. Day

after monoassociation is indicated on the x-axis. MLN cells were stimulated in vitro with 10 lg/ml E. coli NC 101 lysate. Supernatants were col-

lected 72 hr later and IL-10 was quantified by ELISA. (b) IL-10 mRNA expression in transverse colon of GF or E. coli NC101 monoassociated

129SvEv WT mice determined by quantitative PCR. Copy number is normalized to GAPDH and expressed as fold change relative to GF. Each

dot represents an individual mouse evaluated in experiments described for Figure 1. Data were analysed using one-way analysis of variance with

Tukey’s multiple-comparison post-test. P-values indicate statistically significant differences between IL-10 produced by E. coli NC 101 lysate-sti-

mulated MLN cells in (a) or IL-10 mRNA expressed in transverse colon in (b) from GF mice compared with mice at 4, 7, 14 or 30 days after

E. coli NC101 monoassociation. In addition, statistically significant differences in (a), 4-day versus 7-day not significant, 4-day versus 14-day not

significant, 4-day versus 30-day P < 0�001; in (b) 4-day versus 7-day not significant, 4-day versus 14-day P < 0�01, 4-day versus 30-day P < 0�05.
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Figure 3. Kinetics of interleukin-1b (IL-1b) and IL-6 expression in transverse colon of 129SvEv wild-type (WT) mice monoassociated with

Escherichia coli NC101. (a) IL-1b mRNA expression in transverse colon of germ-free (GF) or E. coli NC101 monoassociated 129SvEv WT mice

determined by quantitative PCR. Day after monoassociation is indicated on the x-axis. Copy number is normalized to GAPDH and expressed as

fold change relative to GF. Each dot represents an individual mouse. Data were analysed using one-way analysis of variance with Tukey’s multi-
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of variance with Tukey’s multiple-comparison post-test. P-values indicate statistically significant differences between IL-6 expressed in transverse

colon from GF mice compared with mice at 4, 7, 14 or 30 days after monoassociation. In addition, statistically significant differences in compar-

ing 4-day versus 7-day P < 0�05, 4-day versus 14-day P < 0�001, 4-day versus 30-day P < 0�001.
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ionomycin plus PMA are sufficient for detection of cyto-

kine-producing cells in MLN of GF mice (Fig. 5b,c).

Although the amounts of IFN-c in supernatants of MLN

cells from GF mice stimulated with E. coli lysate for 72 hr

ranged from undetectable to ~0�6 ng/ml (Fig. 1b), the

intracellular IFN-c results show that MLN cells from GF

mice have the capacity to produce this cytokine. How-

ever, MLN from GF mice contain fewer IFN-c producing

CD4-positive and NKp46-positive cells compared with

MLN from E. coli monoassociated mice (Fig. 5b).

We have also determined cytokine-producing cells as a

proportion of each MLN cell subset. The results in

Table 1 show that although only 0�44% of MLN cells

from mice monoassociated with E. coli express NKp46,

an average of 12% of these cells produce IFN-c. A similar

proportion of CD8-positive cells produce this cytokine,

whereas IL-10 is produced by much lower proportions of

CD4-positive (0�25%) or CD19-positive (1�4%) cells.

Recombinant IL-10 treatment in vitro

We then evaluated the effects of exogenous IL-10 on

IFN-c production in vitro in our model system. We har-

vested MLN cells from WT mice monoassociated with

E. coli NC101 for 4 days and stimulated the cells with

E. coli NC101 lysate in the presence of 0, 250, 500, 1000

or 2000 pg/ml recombinant IL-10. As shown in Fig. 6,

addition of recombinant IL-10 caused a dose-dependent

decrease in IFN-c production by MLN cells from each

mouse evaluated.

Interleukin-10 receptor blockade in vivo

To determine the role of endogenous IL-10 in the

immune response that develops in vivo, we investigated

whether blockade of IL-10 signalling will regulate IFN-c

secretion. Either anti-IL-10R-specific antibody or isotype

control antibody was given 1 day before, 2 days after and

5 days after colonization of GF mice with E. coli NC101

and the mice were evaluated 7 days after monoassocia-

tion. Interferon-c measured in supernatants of E. coli

NC101 lysate-activated MLN cells from anti-IL-10R-trea-

ted mice was significantly higher than in supernatants of

MLN cells from mice given isotype control antibody

(Fig. 7a). The IFN-c mRNA expression in the transverse

colon from anti-IL-10R antibody-treated mice was also

significantly higher compared with isotype-control-treated

mice (Fig. 7b). In addition, we detected higher expression

of both IL-1b and IL-6 mRNA in intestinal tissue of anti-

IL10R-treated mice compared with isotype-control-treated

mice (Fig. 7c,d). These data show that blockade of IL-10

signalling in vivo by anti-IL-10 receptor antibody

increased IFN-c production and also mRNA expression

of several cytokines, and indicate that endogenous IL-10,

produced at early time-points after exposure to commen-

sal bacteria, plays a role in suppressing these immune

responses.

Discussion

The intestine of normal adult hosts contains a fully com-

petent immune system and the lumen is occupied by

enormous numbers of microorganisms that produce

numerous components with the potential to activate

innate and acquired immune responses. However, the

normal intestinal tract is in a state of “physiologic inflam-

mation” devoid of overt aggressive responses to luminal

microbes and their products. Here we report the results

of our studies that were designed to elucidate the

immune response in the intestinal tract after initial expo-

sure of normal lamina propria host cells and tissues to

resident microorganisms. We demonstrate that a single
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strain of non-pathogenic E. coli rapidly induces a tran-

sient innate and adaptive effector immune response in

previously GF mice, and that IL-10 produced by B cells

and CD4+ cells is a key mediator of the subsequent sup-

pression of this response.

We initially embarked on the studies described in this

report because we observed an early and then rapidly

down-regulated immune response in the WT mice that

served as controls for our experiments investigating

intestinal inflammation in IL-10-deficient mice colonized
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with normal resident bacteria. Subsequently, in a separate

study, we demonstrated a similar phenomenon at the ear-

liest time-point evaluated (1 week) after adoptive transfer

of IL-10-deficient CD4+ T cells into Rag2�/� immunode-

ficient SPF recipients.13 The Rag2�/� recipients were

crossed to normal mice or to IL-10-deficient mice provid-

ing either Rag2�/� 9 IL-10+/+ or Rag2�/� 9 IL-10�/�

recipients. These mice were born and raised under SPF

conditions and therefore harbour a full complement of

resident microorganisms, but they lack lymphoid cells

before adoptive transfer and so provide an environment

for homeostatic proliferation of donor cells. Relatively

high and also very similar amounts of IFN-c were pro-

duced by MLN cells obtained from both recipient types

1 week after T-cell transfer. By 2 weeks, the MLN cells

obtained from IL-10-replete but not IL-10-deficient recip-

ients no longer produced IFN-c. These results indicate

that the transferred T cells that undergo homeostatic pro-

liferation in SPF Rag2�/� recipients are rapidly activated

to produce IFN-c in vivo by components of the intestinal

microbiota, and this early IFN-c response is inhibited by

recipient-derived IL-10 produced by non-lymphoid cells.

In the experiments described in the current report, all

of the components of the immune system are simultane-

ously exposed to luminal bacteria, whereas in the adop-

tive transfer model we were able to observe the adaptive

immune response of the transferred CD4+ T cells upon

their activation in vivo by resident microbiota. The con-

clusion is similar in both model systems, namely that

resident bacteria rapidly activate lymphoid cells (primarily

CD8-positive cells but also cells that express CD4 or

NKp46) to produce IFN-c and that IL-10 plays a key role

in subsequent suppression of this response. In the adop-

tive transfer model, we concluded that non-lymphoid

cells of the Rag2�/� recipients produce immunoregulatory

IL-10 because the transferred CD4+ T cells were obtained

from IL-10-deficient donors.13 In the model using E. coli

monoassociated WT mice described in the current report,

we identified MLN CD4+ cells and B cells that produce

IL-10 after in vitro re-stimulation with E. coli lysates. It is

likely that other cell types, including myeloid cells and

possibly also NK cells and innate lymphoid cells are cap-

able of producing IL-10; however, we did not detect IL-

10 production by CD11b-positive MLN cells or NKp46-

positive MLN cells from E. coli monoassociated mice.

Numerous studies have identified a critical role for IL-

10 in maintaining intestinal homeostasis.14,35 Both IL-10-

deficient mice18 and IL-10R-deficient mice19 sponta-

neously develop colitis that can be ameliorated by admin-

istration of exogenous IL-10 immunoglobulin fusion

protein that mimics IL-10 activity.36 Our focus on IL-10

in the present study stems from previous investigations

using SPF and gnotobiotic IL-10-deficient mice as rodent

models of chronic intestinal inflammation.13,23,28 There-

fore, in the current experiments, we either provided

exogenous recombinant IL-10 in vitro or injected anti-IL-

10R-specific antibody in vivo to directly evaluate the role

of IL-10 during the initial period after monoassociation

Table 1. Proportion of interferon-c- or IL-10-positive cells in mesenteric lymph node cell subsets

IFN-c positive cells

Germ-free E. coli monoassociated for 4 days

Percent of subset

in MLN1

Percent IFN-c-positive
of subset2

Percent of subset

in MLN

Percent IFN-c-positive
of subset

CD4 32�8 � 1�6 0�74 � 0�06 31�5 � 1�9 1�13 � 0�06**
CD8 14�8 � 0�7 10�68 � 0�83 12�3 � 0�7 11�46 � 0�55
NKp46 0�39 � 0�01 3�55 � 0�83 0�44 � 0�01 12�42 � 1�23***

IL-10 positive cells

Germ-free E. coli monoassociated for 4 days

Percent of subset

in MLN

Percent IL-10 positive

of subset3
Percent of subset

in MLN

Percent IL-10 positive

of subset

CD4 32�8 � 1�6 0�17 � 0�04 31�5 � 1�9 0�25 � 0�04
CD19 37�5 � 2�0 1�40 � 0�05 43�5 � 1�7 1�43 � 0�07
1Values represent mean � SEM of cells expressing the indicated cell surface marker evaluated after overnight stimulation with E. coli NC101

lysate followed by 5 hr incubation with ionomycin plus PMA, with Golgi stop during the last 4 hr. MLN from E. coli NC101 monoassociated

mice n = 4; MLN from GF mice n = 6.
2Values represent mean � SEM of the proportion of IFN-c positive cells determined after gating on each subset.
3Values represent mean � SEM of the proportion of IL-10 positive cells determined after gating on each subset.

**P < 0�01 compared to dual CD4 positive – IFN-c positive cells in MLN of GF mice; ***P < 0�001 compared to dual NKp46 positive – IFN-c
positive cells in MLN of GF mice. Otherwise differences between percent of cytokine positive cells of each subset from E. coli monoassociated

and GF mice are not statistically significant.
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of GF mice with E. coli NC101. The results of these stud-

ies indicate that IL-10 signalling indeed inhibits IFN-c
production and are therefore consistent with the conclu-

sion that IL-10 plays a key role in maintaining a quies-

cent immune response in the intestinal tract. This

conclusion is supported by the observations of Berg

et al.37 that systemic administration of recombinant IL-10

in vivo can attenuate the onset of colitis in IL-10-deficient

mice and prevent progression of inflammation, but not

reverse established colitis.

Our results confirm and extend the comprehensive

analyses published by El Aidy et al.26,27 showing immune

activation at early time-points after colonizing GF

mice with complex faecal microbiota obtained from con-

ventionally housed normal mice. Both our study and El

Aidy’s results show that (i) the mucosal immune system

recognizes and reacts to the components of bacteria that

normally reside in the intestinal tract, and (ii) that GF

mice have a fully functional immune system, with the

capacity to respond rapidly, demonstrated by activation

of both innate and adaptive immune responses following

bacterial colonization. The maturation from a naive to an

activated state proceeds very rapidly upon microbial

exposure of GF mice, even when the mice are monoasso-

ciated with a single species of non-pathogenic intestinal

bacteria, namely E. coli NC101. Of note, E. coli NC101 is

an example of an adherent/invasive E. coli strain29 that

has the capacity to induce bacterial antigen-specific

chronic T-cell-mediated colitis in IL-10-deficient mice.28

As we show in the current report, the same organism can

also activate regulatory responses, including production

of IL-10 in IL-10 replete WT mice.

Our study expands on that of El Aidy et al. in several

key areas. We investigated the kinetics of immune sys-

tem activation of normal GF mice elicited by exposure

to a single well-studied strain of non-pathogenic E. coli

rather than to the multitude of normal resident

microbes. In addition, our in vitro and in vivo results

identify the key role of IL-10 in suppressing the initial

activation of the immune system of normal germ-free

mice after bacterial colonization, and we identified B

cells and CD4+ cells in MLN as the sources of regulatory

IL-10. It is also important to note that in our study, GF

inbred 129S6/SvEv mice are the hosts. El Aidy et al. used

GF C57BL/6 mice. There are many genetic and func-

tional differences between these two strains. For example,

SPF IL-10-deficient mice backcrossed to C57BL/6 mice

are relatively resistant to the development of intestinal

inflammation compared with SPF IL-10-deficient mice

on the 129S6/SvEv background.37 As another example of

the difference between these two inbred strains, the

ileum of SPF and GF C57BL/6 mice contains a higher

proportion of lysozyme-containing Paneth cells and

higher levels of mRNA expression of several isoforms of

a-defensin compared with the same tissue obtained from

SPF and GF 129SvEv mice.38 Therefore, demonstrating

consistent results using a different inbred mouse strain

strengthens the overall conclusion of our study and that

of El Aidy et al. that non-pathogenic bacteria first acti-

vate and then induce immune regulation in the intestinal

tract of normal hosts.
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Figure 6. Interferon-c (IFN-c) production by mesenteric lymph

nodes (MLN) cells treated with recombinant interleukin-10 (IL-10)

in vitro. IFN-c production by unseparated MLN from 129SvEv wild-

type (WT) mice monoassociated with Escherichia coli NC101 for

4 days. MLN cells were stimulated in vitro with 10 lg/ml E. coli

NC101 lysate. Supernatants were collected 72 hr later and IFN-c was

quantified by ELISA. Cultures contained 0, 250, 500, 1000 or

2000 pg/ml rIL-10 added at the time of in vitro stimulation. (a)

Mean � SEM of IFN-c produced by cells from individual mice. Data

were analysed by unpaired Student’s t-test. Asterisks indicate statisti-

cally significant differences comparing IFN-c in supernatants of cul-

tures without rIL-10 to IFN-c in supernatants of cultures containing

2000 pg/ml rIL-10. **P < 0�01, ***P < 0�001. (b) Fold change in

IFN-c compared with amounts produced by cells cultured without

rIL-10. MLN cultures contain 0, 250, 500 or 2000 pg/ml rIL-10

(n = 6 mice); MLN cultures contain 1000 pg/ml rIL-10 (n = 4

mice). Each dot represents an individual mouse. Data were analysed

by one-way analysis of variance with Tukey’s multiple-comparison

post-test. P-values indicate statistically significant differences com-

pared with cultures without added rIL-10.
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Taken together, our results demonstrate that the gut-

associated immune system of normal GF mice recognizes

and rapidly responds to a non-pathogenic strain of

E. coli, with an initial response that includes production

of pro-inflammatory cytokines. This response rapidly pro-

gresses to a regulated homeostatic immune profile with

low IFN-c, IL-1b and IL-6 levels in the presence of sus-

tained bacterial activation of immunoregulatory IL-10.

Hence intestinal IL-10 signalling is a key factor in sup-

pressing the host’s mucosal effector immune response to

resident bacterial components.
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