research

An Architecture Dynamic Modeling Language for Self-Healing Systems

Abstract

AbstractAs modern software-based systems increase in complexity, recovery from malicious attacks and rectification of system faults become more difficult, labor-intensive, and error-prone. These factors have actuated research dealing with the concept of self-healing systems, which employ architectural models to monitor system behavior and use inputs obtaining therefore to adapt themselves to the run-time environment. Numerous architectural description languages (ADLs) have been developed, each providing complementary capabilities for architectural development and analysis. Unfortunately, few ADLs embrace dynamic change as a fundamental consideration and support a broad class of adaptive changes at the architectural level. The Architecture Dynamic Modeling Language (ADML) is being developed as a new formal language and/or conceptual model for representing dynamic software architectures. TheADML couple the static information provided by the system requirements and the dynamic knowledge provided by tactics, and offer a uniform way to represent and reason about both static and dynamic aspects of self-healing systems. Because the ADML is based on the Dynamic Description Logic DDL, architectural ontology entailment for the ADML languages can be reduced to knowledge base satisfiability in DDL

    Similar works