14 research outputs found

    Toward a comprehensive water-quality modeling of Barnegat Bay : development of ROMS to WASP coupler

    Get PDF
    Author Posting. © Coastal Education and Research Foundation, 2017. This article is posted here by permission of Coastal Education and Research Foundation for personal use, not for redistribution. The definitive version was published in Journal of Coastal Research SI78 (2017): 34-45, doi:10.2112/SI78-004.1.The Regional Ocean Modeling System (ROMS) has been coupled with the Water Quality Analysis Simulation Program (WASP) to be used in a comprehensive analysis of water quality in Barnegat Bay, New Jersey. The coupler can spatially aggregate hydrodynamic information in ROMS cells into larger WASP segments. It can also be used to resample ROMS output at a finer temporal scale to meet WASP time-stepping requirements. The coupler aggregates flow components, temperature, and salinity in ROMS output for input to WASP via a hydrodynamic linkage file. The coupler was tested initially with idealized cases designed to verify the water mass balance and conservation of constituent mass using one-to-one and one-to-many connectivity options between segments. A realistic example from the Toms River embayment, a subdomain of Barnegat Bay, was used to demonstrate the functionality of the coupling. A WASP eutrophication model accounting for dissolved oxygen (DO), nitrogen, and constant phytoplankton concentrations was applied to explore the distribution and trends in DO and nitrogen in the embayment for the period of July–August 2012. Results of DO modeling indicate satisfactory agreement with measurements collected at in-bay stations and also indicate that this coupled approach, despite substantial differences in spatiotemporal discretization between the models, provides adequate predictive capabilities.Funding was provided by the NJDEP and the Coastal and Marine Geology Program of the USGS

    Development of Fecal Coliform TMDL Protocols for Bass and Cinder Creeks on Kiawah Island

    Get PDF
    2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Modeling Tools Used for Mercury TMDLs in Georgia Rivers

    Get PDF
    Proceedings of the 2001 Georgia Water Resources Conference, April 26 and 27, 2001, Athens, Georgia.Total maximum daily loads (TMDLs) were developed for mercury in six south Georgia rivers and the Savannah River. Mercury is introduced to these rivers by atmospheric deposition, watershed runoff, and small point source loadings. To produce mercury TMDLs in these rivers, the GIS-based Watershed Characterization System (WCS) and a mercury delivery spreadsheet were developed and applied with the water pollutant fate model WASPS. Together, these models calculate mercury buildup in watershed soils, loading and delivery through the watershed tributary system, and mercury fate in the main stem rivers. These models were applied to six south Georgia rivers and checked against survey data gathered during drought conditions in June, 2000. Despite environmental variability and scientific uncertainties, calculated mercury concentrations in soils, sediment, and water compared reasonably well with the observed data. Example calculations from the Upper Ochlockonee River are given here.Sponsored and Organized by: U.S. Geological Survey, Georgia Department of Natural Resources, Natural Resources Conservation Service, The University of Georgia, Georgia State University, Georgia Institute of TechnologyThis book was published by the Institute of Ecology, The University of Georgia, Athens, Georgia 30602-2202. The views and statements advanced in this publication are solely those of the authors and do not represent official views or policies of The University of Georgia, the U.S. Geological Survey, the Georgia Water Research Institute as authorized by the Water Resources Research Act of 1990 (P.L. 101-397) or the other conference sponsors

    EAES Recommendations for Recovery Plan in Minimally Invasive Surgery Amid COVID-19 Pandemic

    No full text
    Background: COVID-19 pandemic presented an unexpected challenge for the surgical community in general and Minimally Invasive Surgery (MIS) specialists in particular. This document aims to summarize recent evidence and experts’ opinion and formulate recommendations to guide the surgical community on how to best organize the recovery plan for surgical activity across different sub-specialities after the COVID-19 pandemic. Methods: Recommendations were developed through a Delphi process for establishment of expert consensus. Domain topics were formulated and subsequently subdivided into questions pertinent to different surgical specialities following the COVID-19 crisis. Sixty-five experts from 24 countries, representing the entire EAES board, were invited. Fifty clinicians and six engineers accepted the invitation and drafted statements based on specific key questions. Anonymous voting on the statements was performed until consensus was achieved, defined by at least 70% agreement. Results: A total of 92 consensus statements were formulated with regard to safe resumption of surgery across eight domains, addressing general surgery, upper GI, lower GI, bariatrics, endocrine, HPB, abdominal wall and technology/research. The statements addressed elective and emergency services across all subspecialties with specific attention to the role of MIS during the recovery plan. Eighty-four of the statements were approved during the first round of Delphi voting (91.3%) and another 8 during the following round after substantial modification, resulting in a 100% consensus. Conclusion: The recommendations formulated by the EAES board establish a framework for resumption of surgery following COVID-19 pandemic with particular focus on the role of MIS across surgical specialities. The statements have the potential for wide application in the clinical setting, education activities and research work across different healthcare systems
    corecore