1,013 research outputs found

    Effects of Culverts on Brook Trout Genetic Diversity

    Get PDF
    Brook trout (Salvelinus fontinalis) are a species of concern within their native range due to a historical loss of habitat, overfishing, and stocking of non-native salmonids. Road culverts have been recognized as an additional impediment to population persistence as movement between diverse habitat types has been identified as an alternative life-history strategy to maximize spawning and growth. Brook trout were genetically analyzed using a suite of 13 microsatellite loci above 7 culverts with varying levels of passability classified through a physical protocol. While most sites were not found to have losses in genetic diversity, populations above culverts with a high outlet drop were found to have significant population differentiation when compared to streams with passable culverts and streams without culverts. Additionally, restoration of an impassable road culvert on a second order stream (Beaver Creek) occurred in June 2011, potentially reestablishing connectivity between brook trout populations. Genetic assignment to 18 potential source populations identified 24 individuals (63%), of which six (25%) were found to be from source populations other than Beaver Creek within one year post restoration. The results of this study emphasize the importance of uninterrupted connection between populations and highlight the success of such restoration projects

    Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome

    Get PDF
    Mutations in MECP2 cause Rett syndrome (RTT), an X-linked neurological disorder characterized by regressive loss of neurodevelopmental milestones and acquired psychomotor deficits. However, the cellular heterogeneity of the brain impedes an understanding of how MECP2 mutations contribute to RTT. Here we developed a Cre-inducible method for cell-type-specific biotin tagging of MeCP2 in mice. Combining this approach with an allelic series of knock-in mice carrying frequent RTT-associated mutations (encoding T158M and R106W) enabled the selective profiling of RTT-associated nuclear transcriptomes in excitatory and inhibitory cortical neurons. We found that most gene-expression changes were largely specific to each RTT-associated mutation and cell type. Lowly expressed cell-type-enriched genes were preferentially disrupted by MeCP2 mutations, with upregulated and downregulated genes reflecting distinct functional categories. Subcellular RNA analysis in MeCP2-mutant neurons further revealed reductions in the nascent transcription of long genes and uncovered widespread post-transcriptional compensation at the cellular level. Finally, we overcame X-linked cellular mosaicism in female RTT models and identified distinct gene-expression changes between neighboring wild-type and mutant neurons, providing contextual insights into RTT etiology that support personalized therapeutic interventions

    Linear discriminant analysis reveals differences in root architecture in wheat seedlings by nitrogen uptake efficiency

    Get PDF
    Root architecture impacts water and nutrient uptake efficiency. Identifying exactly which root architectural properties influence these agronomic traits can prove challenging. In this paper approximately 300 wheat plants were divided into four groups using two binary classifications, high vs. low nitrogen uptake efficiency (NUpE), and high vs. low nitrate in medium. The root system architecture for each wheat plant was captured using 16 quantitative variables. The multivariate analysis tool, linear discriminant analysis, was used to construct composite variables, each a linear combination of the original variables, such that the score of the wheat plants on the new variables showed the maximum between-group variability. The results show that the distribution of root system architecture traits differ between low and high NUpE wheat plants and, less strongly, between low NUpE wheat plants grown on low vs. high nitrate media

    Passive acoustic monitoring provides a fresh perspective on fundamental ecological questions

    Get PDF
    Passive acoustic monitoring (PAM) has emerged as a transformative tool for applied ecology, conservation and biodiversity monitoring, but its potential contribution to fundamental ecology is less often discussed, and fundamental PAM studies tend to be descriptive, rather than mechanistic. Here, we chart the most promising directions for ecologists wishing to use the suite of currently available acoustic methods to address long-standing fundamental questions in ecology and explore new avenues of research. In both terrestrial and aquatic habitats, PAM provides an opportunity to ask questions across multiple spatial scales and at fine temporal resolution, and to capture phenomena or species that are difficult to observe. In combination with traditional approaches to data collection, PAM could release ecologists from myriad limitations that have, at times, precluded mechanistic understanding. We discuss several case studies to demonstrate the potential contribution of PAM to biodiversity estimation, population trend analysis, assessing climate change impacts on phenology and distribution, and understanding disturbance and recovery dynamics. We also highlight what is on the horizon for PAM, in terms of near-future technological and methodological developments that have the potential to provide advances in coming years. Overall, we illustrate how ecologists can harness the power of PAM to address fundamental ecological questions in an era of ecology no longer characterised by data limitation

    First-year Sloan Digital Sky Survey-II (SDSS-II) Supernova Results: Hubble Diagram and Cosmological Parameters

    Get PDF
    We present measurements of the Hubble diagram for 103 Type Ia supernovae (SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall 2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data fill in the redshift "desert" between low- and high-redshift SN Ia surveys. We combine the SDSS-II measurements with new distance estimates for published SN data from the ESSENCE survey, the Supernova Legacy Survey, the Hubble Space Telescope, and a compilation of nearby SN Ia measurements. Combining the SN Hubble diagram with measurements of Baryon Acoustic Oscillations from the SDSS Luminous Red Galaxy sample and with CMB temperature anisotropy measurements from WMAP, we estimate the cosmological parameters w and Omega_M, assuming a spatially flat cosmological model (FwCDM) with constant dark energy equation of state parameter, w. For the FwCDM model and the combined sample of 288 SNe Ia, we find w = -0.76 +- 0.07(stat) +- 0.11(syst), Omega_M = 0.306 +- 0.019(stat) +- 0.023(syst) using MLCS2k2 and w = -0.96 +- 0.06(stat) +- 0.12(syst), Omega_M = 0.265 +- 0.016(stat) +- 0.025(syst) using the SALT-II fitter. We trace the discrepancy between these results to a difference in the rest-frame UV model combined with a different luminosity correction from color variations; these differences mostly affect the distance estimates for the SNLS and HST supernovae. We present detailed discussions of systematic errors for both light-curve methods and find that they both show data-model discrepancies in rest-frame UU-band. For the SALT-II approach, we also see strong evidence for redshift-dependence of the color-luminosity parameter (beta). Restricting the analysis to the 136 SNe Ia in the Nearby+SDSS-II samples, we find much better agreement between the two analysis methods but with larger uncertainties.Comment: Accepted for publication by ApJ

    Validity of the Common Cold Questionnaire (CCQ) in Asthma Exacerbations

    Get PDF
    Background: The common cold questionnaire (CCQ) is used to discriminate those with and without a viral infection. Its usefulness in people with acute asthma is unknown. Our aim was to asess the ability of the CCQ to detect viral infection and to monitor recovery during a viral induced asthma exacerbation and confirmed by virological testing. Methodology/Principal Findings: We studied subjects (≄7 yrs) admitted to hospital with acute asthma and diagnosed as positive (n=63), or negative to viral infection (n=27) according to molecular and virological testing from respiratory samples. CCQ asthma history and asthma control questionaire were completed and repeated 4-6 weeks later. Sensitivity specificity, and response to change of the CCQ were assessed by receiver operator curve (ROC) analysis and effect size calculation respectively. The CCQ did not discriminate between viral and non-viral infection for subjects with asthma (sensitivity = 76.2%; specificity = 29.6%). ROC analysis could not differentiate between positive or negative virus in subjects with asthma. The CCQ had a large responce to change following recovery (effect size = 1.01). 39% of subjects recovering from viral exacerbation remained positive to virological testing at follow-up despite improvement in clinical symptoms. The CCQ reflected clinical improvement in these subjects, thus providing additional information to complement virological testing. Conclusions/Significance: The CCQ is a useful instrument for monitorong response to viral infection in people with asthma. Reliable differentiation between viral and non-viral asthma exacerbations was not achieved with the CCQ and requires specific virological testing. When combined with virological testing, the CCQ should be a useful outcome measure for evaluating therapies in viral-induced asthma

    The pig X and Y Chromosomes: structure, sequence, and evolution.

    Get PDF
    We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution.This work was funded by BBSRC grant BB/F021372/1. The Flow Cytometry and Cytogenetics Core Facilities at the Wellcome Trust Sanger Institute and Sanger investigators are funded by the Wellcome Trust (grant number WT098051). K.B., D.C.-S., and J.H. acknowledge support from the Wellcome Trust (WT095908), the BBSRC (BB/I025506/1), and the European Molecular Biology Laboratory. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 222664 (“Quantomics”).This is the final version of the article. It first appeared from Cold Spring Harbor Laboratory Press via http://dx.doi.org/10.1101/gr.188839.11

    In silico prediction of cancer immunogens:current state of the art

    Get PDF
    Cancer kills 8 million annually worldwide. Although survival rates in prevalent cancers continue to increase, many cancers have no effective treatment, prompting the search for new and improved protocols. Immunotherapy is a new and exciting addition to the anti-cancer arsenal. The successful and accurate identification of aberrant host proteins acting as antigens for vaccination and immunotherapy is a key aspiration for both experimental and computational research. Here we describe key elements of in silico prediction, including databases of cancer antigens and bleeding-edge methodology for their prediction. We also highlight the role dendritic cell vaccines can play and how they can act as delivery mechanisms for epitope ensemble vaccines. Immunoinformatics can help streamline the discovery and utility of Cancer Immunogens

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore