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Abstract

Cancer kills 8 million annually worldwide. Although survival rates in prevalent cancers continue to increase, many
cancers have no effective treatment, prompting the search for new and improved protocols. Immunotherapy is a
new and exciting addition to the anti-cancer arsenal. The successful and accurate identification of aberrant host
proteins acting as antigens for vaccination and immunotherapy is a key aspiration for both experimental and
computational research. Here we describe key elements of in silico prediction, including databases of cancer
antigens and bleeding-edge methodology for their prediction. We also highlight the role dendritic cell vaccines can
play and how they can act as delivery mechanisms for epitope ensemble vaccines. Immunoinformatics can help
streamline the discovery and utility of Cancer Immunogens.
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Background
Cancer is a catch-all term for a constellation of diseases
typically characterised by abnormal cell division. The
term cancer can be traced to the Greek physician
Hippocrates (460-370 BC), who used the terms carcin-
oma and carcinos to refer to ulcer-forming tumours and
non-ulcer forming tumours. In Greek, these words refer
to a crab. The Roman physician, Celsus (28-50 BC),
translated this to cancer, the Latin for crab. Galen
(130-200 AD) used the Greek word oncos, meaning
swelling to describe tumours. Almost all cells and tissues
can become cancerous, but fortunately most cancers are
very rare. Yet cancer remains one of the prime health
issues of our time [1].
In 2012, there were about 14 million new cancer cases

worldwide and 8.2 million deaths. Deaths caused by can-
cer is very high in developed countries [1]. In 2014, the
US recorded 591,700 deaths from cancer, with approxi-
mately 197,233 deaths in women and 394,466 deaths in
men; about 22% of all deaths. The equivalent UK figures
were 163,000 deaths, or 450 deaths per day; with
approximately 86,500 cancer deaths in men and 76,900

deaths in women; about 25% of all deaths. Yet over half
of the global cancer burden occurs in less well developed
countries. Lung, bowel, liver, and stomach, are the com-
monest cancers globally, equating to 4 in 10 deaths
worldwide. At about 1 in 10 cases, smoking-related lung
cancer is the commonest male cancer.
A cancer can be classed as either “common” or “rare”

based on relative prevalence. The precise threshold
between classes remains open. The US National Cancer
Institute (NCI) identifies “rare” as those cancers with a
prevalence below 15 in 100,000 [2]. This means only 11
adult cancers are defined as common in the US: pros-
tate, breast, lung, bowl, cervical, bladder, rectum, ovary,
kidney, melanoma, and non-Hodgkin lymphoma [3].
Other adult cancers - about 25% of all adult cancers -
are, by this definition, “rare” [3].
Driven by the financial exigencies governing drug

discovery and development, effective cancer treatment is
significantly skewed towards common cancers. As an
example, there are over 20 Category 1 intervention -
uniform consensus that intervention is appropriate and
based on significant evidence - for prostate and breast
cancer, the commonest cancers in men and women [4–6].
Yet none exist for say the bone cancers, chondrosarcoma
or chordoma, which affect under 1000 individuals annu-
ally in the US [7–9].
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Survival varies considerably between different cancers.
It ranges from 98% for testicular cancer to about 1% for
pancreatic cancer. Most common cancers have a 10-year
survival above 50%. Over 80% of those with cancers
which are easy to treat and/or diagnose survive for 10+
years, yet less than 1 in 5 people with hard-to-treat or
hard-to-diagnose cancers survive for 10 years or more
[10]. Thus cancer remains a pivotal unmet medical need,
driving both technical innovations and improved clinical
practice, resulting in dramatic improvement in cancer treat-
ment. In the UK, mortality rates peaked in the 1980s, with
overall cancer mortality falling by 14% since the early
1970s, with a 22% decrease in men and an 8% decrease in
women. In the UK, mortality for all cancers is predicted to
decrease by 15% in the period 2014-2035, reaching less than
280 deaths per 1 hundred thousand by the year 2035 [10].
According to somatic mutation theory, mutations in

DNA and epi-mutations disrupt the programmed regula-
tion of cell division, upsetting the balance between pro-
liferation and apoptotic cell death, resulting in excessive
and uncontrolled division. Many mutations lead to can-
cer, but most do not. The treatment of solid tumours in
particular has changed dramatically in recent years due
to enhanced molecular diagnostics helping to identify a
burdening number of addressable oncogenic abnormalities
including in-frame insertions/deletions and amplification
or rearrangements and gene activating point mutations.
Historically, cancer has been treated by small molecule

drugs. A number of anti-cancer drugs are classed as
agents of so-called chemotherapy. These are typically
characterised by significant side-effects, as many affect
cells indiscriminately. The main types of chemotherapy
include DNA-damaging alkylating agents, including
structurally-simple reactive molecules such as Busulfan;
Antimetabolites, which compete with natural nucleo-
tides for incorporation into DNA or RNA, impairing
DNA replication, such as 5-fluorouracil; Anti-tumour
antibiotics, such as complex natural product Epirubicin;
Topoisomerase inhibitors, which interfere with DNA
unzipping prior to replication, such as Topotecan;
Mitotic inhibitors, such as plant-derived natural product
Paclitaxel; and Corticosteroids, such as Prednisone [11].
Other, more targeted therapies are now appearing. Preci-
sion medicine can be defined as therapy individualised
to each tumour, achieving this by exploiting quantifiable
genetic alterations as de fact predictive biomarkers and/
or as therapeutic or prophylactic targets for the next
generation of cancer treatments.
Most recently, immune based approaches have gained

significant saliency. Immunotherapy directed against
cancer, include a triumvirate of main approaches: mono-
clonal antibodies, immune checkpoint inhibitors, and
vaccines. The immune response has two arms: the
humoral, or antibody-mediated, arm and the cellular

arm, mediated primarily by T cells. Historically, almost
all vaccine prophylactic responses have been mediated
by Antibodies. Each human has billions of potential anti-
bodies capable of recognizing proteins and tagging them
for elimination. The individual ‘baseline’ for addressing
antigen challenge is the primary naïve antibody reper-
toire. The structural and sequence diversity of this base-
line enables the immune system to recognize, at least
weakly, a very large set of antigens. Unfortunately, only a
subset of Tumour Associated Antigens (TAAs) are
amendable to the antibody mediated responses necessi-
tating the exploration of cellular immune mechanisms
as a replacement or adjunct therapy.
The effectiveness of potential therapeutic cancer vac-

cines is often reduced by mechanisms in cancer patients
that suppress T-cells and antigen presenting cells
(APCs). Most cancer vaccines induce anti-tumour im-
mune responses when formulated with strong adjuvants,
due to the general lack of immunogenicity exhibited by
vaccines not derived from whole pathogens. Vaccination
against cancer takes several forms: DNA-based vaccines,
RNA-based vaccines, and DC-based vaccines.
DNA vaccines: trials to evaluate the efficacy of

Inovio Pharmaceuticals combination vaccine INO-3112
are planned against cervical, head, and neck cancers
(NCT02172911, NCT02163057) “http://ir.inovio.com/
news-and-media/news/press-release-details/2017/Inovio-
Begins-Phase-3-Clinical-Trial-of-VGX-3100-for-the-
Treatment-of-HPV-Related-Cervical-Pre-Cancer/default.aspx”.
INO-3112 contains plasmids encoding E6 and E7 (VGX-
3100) [12] combined with DNA-based IL12 delivery
(INO-9012). Inovio’s preventive anti-HIV DNA vaccine,
PENNVAX-G, used in a prime-boost protocol with
altered pox virus vector, has a satisfactory safety and
immunogenicity profile [13]. This study should foment
design of anti-cancer therapeutic vaccines by exploring
prime-boost regimens using DNA vaccines and viral
boosts. The Vaccibody-developed DNA-based vaccine
VB10.16 targets HPV16 “http://www.vaccibody.com/
vb10-16/”. A trial (NCT02529930) is set to launch; if suc-
cessful it should provide an innovative and much needed
non-invasive way to treat HPV-induced cervical cancers.
RNA vaccines: Sahin’s group pioneered use of lipid-

based positively-charged nanoparticles delivering RNA
encoding TAAs, to target DCs in vivo and thus simulate
an anti-viral response [14]. This is currently undergoing
a phase I trial in melanoma patients (NCT02410733). A
two component RNA vaccine platforms launched by
Curevac has also yielded promising results in early trials
(NCT00923312) [15].
DC-based vaccines: multiple platforms are being

developed to harness ex vivo activated DC vaccines for
cancer immunotherapy. These platforms include the
with-antigen loading vaccine DCVax-Direct “https://
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www.nwbio.com/dcvax-direct/” and the without-loading
vaccine DCVaxL “https://www.nwbio.com/dcvax-tech-
nology/”. Similarly, the Individualized Vaccines Against
Cancer (IVAC) platform uses autologous DCs loaded with
individually sequenced neo-antigens (NCT02035956,
NCT02316457). The potential of DC vaccines is only be-
ginning to be explored.
Protein-based vaccines: As TAA are poorly immuno-

genic, an adjuvant able to generate effective immune re-
sponse should be added in the protein-based vaccines
[16, 17]. Aluminum salts (alum) are used as adjuvants
promoting protective humoral immunity, while for the
activation of cell-mediated immunity are used conserved
moieties associated with pathogen or endogenous alar-
mins like head shock proteins (HSPs). HSPs are able to
induce both innate and addaptive immune responses.
The first autologous HPS vaccine, Oncophage, failed to
demonstrate survival benefits in Stage IV melanoma pa-
tients although stage I and II patients seemed to benefit
from vaccination [18]. Wang et al. [19] have developed a
platform for generating of chaperone complexes between
HSPs and clinically relevant TAA.
Computational prediction can give important insight

into both antibody and cellular immune responses. Here
we examine non-experimental approaches to the cata-
loguing and prediction of TAAs. We describe the classi-
fication of TAAs into separate categories, databases that
curate and classify TAAs, servers that facilitate the
accurate and robust prediction of TAAs, and the role of
DC vaccines to fight cancer and deliver pre-loaded
epitope ensemble vaccines.

Classification of tumour antigens
Tumour Antigens are expressed largely, but not solely,
by tumour cells. Utilisation of defined tumour antigens
represents perhaps the most likely current approach
accurately to directing immunotherapies towards differ-
entiating cancer from neoplastic cells. As such, tumour
antigens form the underpinning bedrock of modern
tumour immunotherapy.
Tumour Antigens can be effectively classified using a

scheme based primarily on their origin and distribution.
Although there is no officially sanctioned classification
system for tumour antigens, most experts in the field
[20] broadly accept a classification protocol that makes
use of the broadness of expression of individual antigens
and how specific they are to a particular form of tumour.
According to such a classification, tumour-associated
antigens can be broadly divided into the following the-
matic categories:

1) Unique tumour-specific antigens (TSA). They occur
within a single type of tumour in one patient. Such
antigens can form excellent targets for personalized

cancer immunotherapy. Examples include MAGE
melanoma-associated genes.

2) Shared lineage-specific differentiated antigens. They
are expressed in both tumor and healthy tissue and
typically viewed as poorer or secondary targets for
immunotherapy. However, CD19, a B cell marker, is
one of the most successful cancer targets [21].

3) Shared tumour-specific antigens or cancer neo-
antigens. They are expressed in different tumour but
not in healthy tissues and can form the basis of ‘off-
the-shelf ’ vaccines applicable in a broad array of
cancers and patient populations. These are unique
MHC restricted antigens created by mutations in
tumour cells. Vaccines designed to target these antigens
should theoretically be able to target tumour cells
specifically while obviating the induction of general
autoimmunity or tolerance. However, not all tumours
express immunogenic neo-antigens. Moreover, tumours
and patients have unique neo-antigen repertoires
necessitating personalized neo-antigen discovery
programs that facilitate the development of personalized
vaccines against predicted neo-antigen epitopes.

4) Shared over-expressed antigens. They are not
tumour-specific but have a much greater expression
in tumours compared to neoplastic cells. This category
covers antigens that are present in both normal and
tumour cells but which are substantially over-expressed
by tumour cells. Example antigens falling into this
category include Her2/Neu [22], mesothelin [23],
lineage and tissue restricted differentiation antigens
such as melanoma differentiation antigens (Tyrosinase
Related Protein-2 and Melan-A (MART-1)) and
Oncofetal antigens (Carcinoembryonic antigen) [24].

5) Oncoviral Antigens: These are antigens expressed by
viruses, like human papilloma virus (HPV) and
Merkel cell polyomavirus that cause tumorigenic
transformation in cells. As these antigens are
typically only found expressed on infected cells, they
are able to be recognized by the immune system as
‘non-self ’ distinct from the “self” or host protein [25].

As is made evident by the above classification, not all
TAA are suitable for cancer immunotherapy. According
to Kessler and Melief [20], a TAA could be considered
as a potential cancer immunogen, if it responds to the
following criteria: to be tumour-specific and widely
shared, to play a role in the oncogenic process, or to
promote cancer cell survival and thus provoke an
immune response. It is possible, at least theoretically, to
target TAAs using either an antibody or a cellular
approach, although in practice this depends on the level
and time-course of antigen expression. Antigens select-
ively expressed on the cell surface either constitutively
or for periods of long duration are potent targets for
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antibodies, but antigens that only appear on the surface
as epitopes bound to MHCs are clearly only amenable to
surveillance by cellular immunity.

Databases of cancer immunogens
Due to the very extensive and intensive research efforts
focussing on cancer aetiology and therapy seen during
the last few decades, a plethora of cancer-associated data
has accumulated and has subsequently been archived in
a wide variety of different databases and repositories
[26]. Here, we review only the most relevant databases
for cancer immunogens available free on the web:

1) The Peptide Database of the Cancer Research
Institute [27] has been established in 2001 and today
it comprises more than 400 fully validated tumour
antigenic peptides (URL: https://
www.cancerresearch.org/scientists/events-and-
resources/peptide-database). They are classified as
mutated, tumour-specific, differentiated, and
overexpressed. Other antigens are classed as potential,
as a catch-all for those antigens whose comprehensive
characterization is not yet reported.

2) The database of differentially expressed proteins (or
dbDEPC) contains 4029 differentially expressed
proteins, collected from 331 mass spectrometry
experiments across 20 types of human cancer [28,
29]. This database allows one o search for proteins
undergoing changes in certain cancers, shows
protein expression heat-maps across various cancers,
and relates protein expression changes to changes at
the genetic level. Moreover, it also includes information
on experimental methodology used, sophisticated tools
for filtering user-specified analysis, and a tool for ana-
lysing networks.

3) The Cancer-Testis database (CTdatabase; URL:
http://www.cta.lncc.br/) contains known cancer testis
antigens, typically proteins of known immunogenicity
differentially expressed by different forms of cancer
versus normal tissue [30]. The database contains links
to relevant CT antigen articles plus basic information
such as gene names, their aliases, genomic location and
corresponding RefSeq accession numbers, known splice
variants, reported gene duplications, mRNA levels in
cancer and normal tissues, as well as antigen-specific
immunological responses in cancer patients.

4) TANTIGEN (URL: http://cvc.dfci.harvard.edu/tadb/)
is a database housing a comprehensive collection of
cancer antigens, with over 1000 measured tumour
peptides from 368 proteins [31]. TANTIGEN is thus
a rich data source for those working to discover
tumour-associated epitopes and neo-epitopes.
Archived peptides are classified in a set of
categories:

A. Peptides which bind in vitro to HLA but are not
reported to engender in vivo or in vitro cell
responses.

B. Peptides found to bind HLA and to engender an
in vitro T cell response.

C. Peptides shown to mediate in vivo tumour
rejection.

D. Peptides naturally processed and presented, as
identified by physical techniques.

Servers for prediction of cancer immunogens
As both CD8+ and CD4+ T cells play a significant role
in tumour rejection, most of the in silico methods for
cancer immunogens prediction utilize servers for T-cell
epitope prediction. Cancer immunogens are processed
mainly in the dendritic cells by a cascade of enzymatic
digestion in proteasomes or endosomes followed by
assembling with HLA class I or class II proteins in the
endoplasmic reticulum and presentation of the com-
plexes on the cell surface where they are recognized by
the CD8+ and CD4+ T cells, respectively [21]. The
servers for T cell prediction utilize a wide range of differ-
ent algorithms for prediction of peptide binding to HLA
class I and class II proteins [32–34]. Servers trained to
recognize whole cancer immunogens include:

1) VaxiJen was the first server for prediction of cancer
immunogens applying a unique alignment-free
algorithm [35]. The hydrophobicity, molecular size
and polarity of amino acid residues were presented
by z-scores [36]. The strings were converted into
uniform vectors by auto- and cross covariance
(ACC) transformation [37]. The algorithm was
trained on a set of 75 known tumour antigens and
75 randomly chosen human proteins and tested on a
set of 25 known tumour antigens and 25 human
proteins. VaxiJen identified 96% of the test tumour
antigens and 76% of the test human proteins with
overall accuracy of 86% at threshold of 0.5.

2) TIminer (Tumor Immunology miner) is a pipeline
for mining tumour-immune cell interactions from
next-generation sequencing data [38]. It provides
HLA class I typing by RNA-seq, characterization of
immune infiltrates and quantification of tumour
immunogenicity through immunophenogram and
immunophenoscore, and neoantigen prediction from
mutated proteins binding to patient-specific HLA
class I proteins.

3) MuPeXI (mutant peptide extractor and informer)
identifies tumour-specific peptides and assess their
potential to be neo-epitopes [39]. It consists of
several steps: identifies protein sequence changes
that result from a genomic alteration, retains the
alteration-containing peptides as potential neo-
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peptides, compares them to the human proteome
and penalizes the identical as non-immunogenic,
predicts the binding affinities of neo-peptides to
patient-specific HLA types, and prioritize the neo-
peptides which are likely to be abundantly presented
by patient’s HLA and recognized by the T cells.

To improve these servers, we need both an improve-
ment to the underlying data – in terms of quantity and
quality - and to the breadth and robustness of algo-
rithms. What is also very much required is a much bet-
ter and much more carefully constructed tranche of
negative training sets and algorithmic learning protocols
over and above just simple improvements in reported
accuracy. We should balance the selection of negative
test sets so that any signal present reflects antigenicity
and no other quality, selecting similar origin species,
similar subcellular locations, similar protein lengths, and
similar functions. Robustness in particular is seldom
addressed by method developers. An over-specified
algorithm which works well interpolating within a
poorly-defined multidimensional subset of the overall
chemical space is seldom likely to extrapolate well to
unseen data that clearly lies outside such a space.

Antigen selection for cell-based cancer treatment: subunit
and epitope ensemble vaccines delivered by dendritic cell
and antigen selection for CAR T-cell therapy
Several decades ago, the advent of biologics revolution-
ized the pharmaceutical industry. Today, biomedicine is
on the cusp of another revolution: cells as therapies. The
potential of such novel therapies is enormous but signifi-
cant challenges remain. Natural in origin or designed,
such cells will present problems scientific, regulatory,
and economic in nature. Cellular medicines will necessi-
tate the development of a foundational cellular engineer-
ing science providing a systematic framework for the
safe and predictable modulation of cell behaviour. In the
vanguard of cellular medicine is the development of DC-
based vaccines and the advent of CAR T-cell therapy. It
should be noted that the immunoinformatic prediction
of cancer antigens, as adumbrated in preceding sections,
potentially underpins several important therapeutic
strategies - CAR T-cell therapy and DC vaccines – as
well as epitope ensemble vaccines. We explore these
exciting strategies here.
Amongst all APCs, so-called dendritic cells (DCs),

have the greatest perceived capacity to initiate innate
and adaptive immune responses. DC based vaccines
offer the potential therapeutic benefits of suppressive
therapies against pathogens, tumours, and/or auto-
immune diseases [40]. Consequently, there has been a
maelstrom of activity in creating and testing DC cancer
immunotherapy. DC vaccines are primarily used to treat

cancer. For example, sipuleucel-T is a US approved DC-
based vaccine for treatment of hormone-insensitive
prostate cancer.
In the 1970’s, Ralph Steinman discovered DCs in the

spleen. Post 1970’s, it was revealed that DCs exist in
non-lymphoid and lymphoid tissues as antigen present-
ing cells. The theoretical framework was based on Daniel
Hawiger’s experiment which utilised antigens specific for
diseases such as: tuberculosis, diabetes, HIV, allergy or
cancer. The specific antibody was used as a delivery
vehicle and carried these antigens to DCs. This notion
was applied by Steinman, exploiting varying receptors to
trigger an immune response by targeting DCs [41].
DCs are present in an immature state in the blood,

upon activation they migrate to the lymph tissue where
they network with B cells and T cells. Immature DCs
migrate through the blood stream from the bone mar-
row to enter tissues, ingesting particulate matter by
phagocytosis and persistently absorb large amounts of
extracellular fluid by micropinocytosis. Also presenting
where there is contact with the external environment as
they are portals of entry for infectious organisms, includ-
ing the lining of the nose, lungs, intestine and stomach.
DCs take up and process antigens and migrate to
regional lymph nodes.
Manipulation of the immune system to eliminate can-

cer cells has long been a clinical and preclinical focus.
Although achieving some success with cytokines such as
IFN-γ and IL-2, an immunotherapy with proven clinical
outcomes remain elusive. As previously, peptide-based
approaches were discouraging, isolating stem cells from
cultured blood resulted in sipuleucel-T (Provenge). Stem
cells were loaded with cancer antigens and became
sensitised. Sensitised DCs are injected into the skin and
travel to the lymph node where they seek out specific
lymphocytes. The DCs then initiate specific lymphocytes
to multiply and attack cancer cells [42].
Thus the secret to future effective DC-based vaccines

capable of combatting cancer is the identification of po-
tent cancer antigens. A key alternative to whole protein
immunogens is the idea of loading DCs with an epitope
ensemble vaccine as a prelude to creating an anti-cancer
vaccine. Here immunoinformatics can help.
Efforts supporting the development of a T-cell poly-

epitope or epitope ensemble vaccine fall into two camps:
un-validated prediction-only methods that predict sup-
posedly high-binding epitopes [43] and more modern
approaches that use immunoinformatics to select rather
than predict the best epitopes suitable for forming a vac-
cine [44, 45]. Both rely on the development of accurate,
reliable, and robust algorithms for the prediction of
epitope affinity [46] and processing [47]. Here accurate
refers to the nearness of results to reality, reliable – to
the broadness of this accuracy in terms of distinct
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epitopes and MHC alleles, and robust – to the ability to
deal with new data radically different from that it has
seen before. Most algorithms, show variable perform-
ance in regard to these different criteria.
Prior to DC-based vaccines, small-molecule based

chemotherapy and other toxic therapies were used to
prevent or slow the progression of tumours. DC-based
vaccines have the ability to initiate an immunological re-
sponse that will hinder the development of malignancies
even whilst the cancer cells mutate, and thus represent a
potential step-change in cancer treatment. DC vaccine
studies have shown that stimulating antigen specific
cytotoxicity in vivo and in vitro exhibit a lack of toxicity
and increase survival rates. In 16 different clinical trials,
over 200 patients were treated for brain tumours, and
have proven to treat metastasis although the clinical re-
sponse is seemingly dependent on when immunotherapy
is administered. Patients who benefit most are patients
in early stage metastasis with a lower tumour burden.
Multiple vaccines rather than a single vaccine stimulate
a more multivalent response.
Currently, most DC therapies are rather limited in

their scope, since they are typically used as part of a
complex combination treatment rather than a mono-
therapy. Nonetheless, current state-of-the-art DC-based
therapies is the cause for much optimism since they are
clearly a prime candidate for future elaboration, leading
to a wealth of promising future treatments.
Recently, immunotherapy, rather than vaccination per

se, has the potential “fifth pillar” of cancer treatment.
So-called Adoptive Cell Transfer, or ACT, collects
patients’ immune cells to treat cancer; of the various
types of ACT, Chimeric antigen receptors (CARs) T-cells
seems the most promising. When a CAR is derived from
an antibody, the resulting T-cell will combine its own ef-
fector functions with an antibody’s ability to recognize
non-protein antigens and be freed from obligatory major
histocompatibility complex restriction.
Hitherto, CAR T-cell therapy has been limited to

small-scale clinical trials, mostly in blood cancer
patients. In 2017, two CAR T-cell therapies gained ap-
proval by the Food and Drug Administration (FDA): one
for patients with advanced lymphomas, the other for
acute paediatric lymphoblastic leukemia. Yet this is still
an early phase for CAR T-cell therapy, with questions
over their potential effectiveness against solid tumours.
In particular, technical questions about the identification
and selection of appropriate antigens for incorporation
into CARs remain.
To a crude, first approximation, a CAR is composed of

an extracellular targeting domain (ectodomain), and
transmembrane region, and an intracellular T-cell signal-
ling domain (endodomain) [48]. The ectodomain can
constructed from a limited repertoire of signalling

domains, such as ZAP70 or CD28. The ectodomain is a
more challenging design puzzle, as it is exquisitely linked
to the form of cancer being targeted. While immuno-
globulin domains in their antibody and TCR guises are
perhaps the most obvious candidates, a plethora of
ever-increasing number and diversity continue to
emerge [49, 50]. These include, inter alia, adnectins,
Affibodies, Avimers, DARPIns, Fynomers, Kunitz
domains, knottins, and Nanobodies. The challenge here
is twofold: one predicting using VaxiJen or equivalent
approach the appropriate target.
However, perhaps the most interesting, intriguing, and

exciting alternative is the possibility of including antica-
lins [51, 52] as antibody surrogates. Anticalins are non--
natural engineered lipocalins able to bind small
molecules in a hapten-dependent but conjugate antigen-
independent manner. This would open up metabolites
secreted in a cancer-dependent fashion by tumours as
putative targets for anti-cancer CAR T-cells. Moreover,
lipocalins as well as binding small molecule ligands of all
kinds, also have the capacity to bind macromolecules
with high specificity [51]. This could open the way to
dual specificity anticalin CAR T-cells able to bind both
cancer-specific metabolites and cell surface receptors,
enlarging the homing capacity and cell-targeting abilities
native to T cells.

Discussion
The worth, value, and utility of vaccines, though clear
for all to see, is not yet unchallenged; yet most reason-
able people are likely to agree that they are, qualifica-
tions apart, a thing of inestimable value and utility.
Existing vaccines are not perfect. One might argue that
their intrinsic complexity, and the highly empirical
nature of their discovery over decades, and the fraught
nature of their manufacture, is a root of current mis-
trust. In some senses this also hampered the progress of
cancer vaccines and immunotherapy. Finally, these are
beginning to make some headway.
Computational prediction has a part to play, one of

the strongest messages to emerge from this review is
that immunogenicity is a multi-factorial property: some
protein antigens are immunogenic for one reason, or set
of reasons, while another protein will be immunogenic
for another possibly-tangential reason or set of reasons.
Each such a causal manifold seems dauntingly complex
and confusing. The prediction of immunogenicity for
cancer antigens is a greater problems still in multi-
factorial prediction since we must factor in the high
degree of antigenic similarity to other host proteins.
Thus the search for new antigens is a search through a
multi-factorial landscape of contingent causes. As noted
above, the immunoinformatic prediction of cancer anti-
gens potentially underpins several important therapeutic
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strategies, including epitope ensemble vaccines, CAR T-
cell therapy, and DC vaccines.
To develop proper predictive approaches to the pre-

diction of cancer and other immunogenic antigens we
need to address several issues. We require more “posi-
tive” and carefully curated, validated data focussed on
cancer. While there are databases of vaccine antigens -
AntigenDB [53] is a dedicated resource directly address-
ing this, as well as IEDB [54] - similar yet better data re-
sources are still required, suggesting the need to enlarge,
deepen, and broaden available data collections. We also
require much better and much deeper representations of
the sequence data. Single descriptors characterising the
whole sequence [55], and other multivariate descriptors
of sequences. One could envisage a phase space of
disjoint descriptor variables from which variable selec-
tion protocols could extract a compact, near-optimal
choice of indicative variables. Also, better algorithms are
needed. Powerful machine learning toolkits, such as
Weka, are already available, and these are more than
capable of delivering robust and extensible methods pro-
vided the data and the data representation are adequate.
Yet, as new algorithms appear we must not be compla-
cent but open, embracing proven innovations.
Better protocols for establishing the immunogenicity

of identified potential vaccines are desperately needed.
This work is that of the experimentalist. Here a fast,
straightforward methodology is required which projects
a more consistent, clearer, and much more accurate pic-
ture of the immunogenicity of individual proteins. As
with many computational studies of real world prob-
lems, there is also general need for experiments able to
validate predictions. The in silico analyses of pathogen
genomes and virtual proteomes, has led to the publica-
tion of innumerable papers reporting potential but
unverified vaccine candidates [56–58]. Such papers typ-
ically use methodology largely embodied in web-servers:
operating such systems is facile, and the resulting ana-
lysis straightforward. Publishing unverified papers ultim-
ately becomes counterproductive. Science progresses
through independent corroboration by verification by
peers. Science progresses faster when people do not
waste time on fruitless research. Many are rightly
alarmed by the increasing perception that the complex
results of present day science cannot be reproduced and
validated. Explanations are legion, including increased
levels of scrutiny and institutional pressure on research
and individual researchers. Arguably, the greatest issues
are the increasing complexity and instrumentality of
modern experimentation, in the opaqueness of many
systems being studied, and the daunting technicality of
analysing and teasing out the nature of many experi-
ments. Computational experiments may be reproducible
in themselves but without robust and reproducible

experimental validation mean little. Other vaccine pre-
diction studies give credibility to their results [59, 60] by
linking vaccine design to experimental validation. Even
in the current atmosphere of hysteria and hyperbole
over AI, prediction lacking validation exerts slight influ-
ence and convinces few.

Conclusions
The utility of vaccines, though clear to most of us, is not
yet unchallenged. Existing vaccines are not perfect. This
also hampered cancer vaccines and immunotherapy.
Finally, these are beginning to make some headway.
Computational prediction has a part to play, one of the
strongest messages to emerge from this review is that
immunogenicity is a multi-factorial property. The pre-
diction of immunogenicity for cancer antigens is a
greater problems still in multi-factorial prediction since
we must factor in the high degree of antigenic similarity
to other host proteins. Immunoinformatics is poised to
deliver on its potential and open up a whole new era in
Cancer immunotherapy.

Abbreviations
AI: Artificial intelligence; APC: Antigen presenting cell; DC: Dendritic Cell;
DNA: Deoxyribose nucleic acid; IEDB: Immune epitope database;
RNA: Ribonucleic acid; TAA: Tumour associated antigen; TSA: Tumour specific
antigen

Acknowledgements
Not applicable.

Funding
The authors’ research was funded by Aston University, the National Science
Fund, Bulgaria, and the Medical Research Council of the Medical University
of Sofia, Bulgaria.

Availability of data and materials
Not applicable.

Authors’ contributions
ID and DRF were PIs of certain research projects covered in this review. Both
authors drafted, reviewed and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Faculty of Pharmacy, Medical University of Sofia, 2 Dunav st, 1000 Sofia,
Bulgaria. 2School of Life and Health Sciences, Aston University, Aston
Triangle, Birmingham B4 7ET, UK.

Doytchinova and Flower BMC Immunology  (2018) 19:11 Page 7 of 9



Received: 13 October 2017 Accepted: 6 March 2018

References
1. Siegel RL, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin.

2014;64:9–29.
2. National Cancer Institute. (2007). Synergizing epidemiologic research on rare

cancers. https://epi.grants.cancer.gov/events/rare-cancers/
3. Greenlee RT, Goodman MT, Lynch CF, Platz CE, Havener LA, Howe HL. The

occurrence of rare cancers in United States adults, 1995-2004. Public Health
Rep. 2010;125(1):28–43.

4. Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, Elias
AD, Farrar WB, Forero A, Giordano SH, Goetz MP, Goldstein LJ, Isakoff SJ,
Lyons J, Marcom PK, Mayer IA, McCormick B, Moran MS, O'Regan RM, Patel
SA, Pierce LJ, Reed EC, Salerno KE, Schwartzberg LS, Sitapati A, Smith KL,
Smith ML, Soliman H, Somlo G, Telli M, Ward JH, Shead DA, Kumar R. NCCN
Guidelines Insights: Breast Cancer, Version 1.2017. J Natl Compr Canc Netw.
2017;15(4):433-51.

5. Carroll PR, Parsons JK, Andriole G, Bahnson RR, Castle EP, Catalona WJ, Dahl
DM, Davis JW, Epstein JI, Etzioni RB, Farrington T, Hemstreet GP 3rd,
Kawachi MH, Kim S, Lange PH, Loughlin KR, Lowrance W, Maroni P, Mohler
J, Morgan TM, Moses KA, Nadler RB, Poch M, Scales C, Shaneyfelt TM,
Smaldone MC, Sonn G, Sprenkle P, Vickers AJ, Wake R, Shead DA,
Freedman-Cass DA. NCCN Guidelines Insights: Prostate Cancer Early
Detection, Version 2.2016. J Natl Compr Canc Netw. 2016;14(5):509-19.

6. Siegel RL, Miller KD, Jemal A. Colorectal Cancer mortality rates in adults aged
20 to 54 years in the United States, 1970-2014. JAMA. 2017;318(6):572–4.

7. Biermann JS, Chow W, Reed DR, Lucas D, Adkins DR, Agulnik M, Benjamin
RS, Brigman B, Budd GT, Curry WT, Didwania A, Fabbri N, Hornicek FJ,
Kuechle JB, Lindskog D, Mayerson J, McGarry SV, Million L, Morris CD, Movva
S, O'Donnell RJ, Randall RL, Rose P, Santana VM, Satcher RL, Schwartz H,
Siegel HJ, Thornton K, Villalobos V, Bergman MA, Scavone JL. NCCN
Guidelines Insights: Bone Cancer, Version 2.2017. J Natl Compr Canc Netw.
2017;15(2):155-67.

8. McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM. Chordoma:
incidence and survival patterns in the United States, 1973-1995. Cancer
Causes Control. 2001;12:1–11.

9. Orphanet. Prevalence and incidence of rare diseases: bibliographic data.
2016. http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_
rare_diseases_by_alphabetical_list.pdf.

10. http://www.cancerresearchuk.org/health-professional/cancer-statistics-
for-the-uk.

11. Isoldi MC, Visconti MA, Castrucci AM. Anti-cancer drugs: molecular
mechanisms of action. Mini Rev Med Chem. 2005;5(7):685–95.

12. Morrow MP, Kraynyak KA, Sylvester AJ, Shen X, Amante D, Sakata L, Parker L,
Yan J, Boyer J, Roh C, et al. Augmentation of cellular and humoral immune
responses to HPV16 and HPV18 E6 and E7 antigens by VGX-3100. Mol Ther
Oncolytics. 2016;3:16025.

13. Nilsson C, Hejdeman B, Godoy-Ramirez K, Tecleab T, Scarlatti G, Brave A, Earl
PL, Stout RR, Robb ML, Shattock RJ, et al. HIV-DNA given with or without
intradermal electroporation is safe and highly immunogenic in healthy
Swedish HIV-1 DNA/MVA vaccinees: a phase I randomized trial. PLoS One.
2015;10:e0131748.

14. Vormehr M, Schrörs B, Boegel S, Löwer M, Türeci Ö, Sahin U. Mutanome
engineered RNA immunotherapy: towards patient-centered tumor
vaccination. J Immunol Res. 2015;2015:595363.

15. Rauch S, Lutz J, Kowalczyk A, Schlake T, Heidenreich R. RNActive (R)
technology: generation and testing of stable and immunogenic mRNA
vaccines. Methods Mol Biol. 2017;1499:89–107.

16. Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Xiang-Yang Wang XY.
Therapeutic Cancer vaccines: past, present and future. Adv Cancer Res.
2013;119:421–75.

17. Flower DR. Towards the systematic discovery of immunomodulatory
adjuvants. In: Flower DR, Perrie Y, editors. Immunomic discovery of
adjuvants and candidate subunit vaccines: Springer; 2013. p. 155–80.

18. Wood C, Srivastava P, Bukowski R, Lacombe L, Gorelov AI, Gorelov S, et al.
An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus
observation alone for patients at high risk of recurrence after nephrectomy
for renal cell carcinoma: a multicentre, open-label, randomised phase III trial.
Lancet. 2008;372:145–54.

19. Wang XY, Sun X, Chen X, Facciponte J, Repasky EA, Kane J, et al. Superior
antitumor response induced by large stress protein chaperoned protein
antigen compared with peptide antigen. J Immunol. 2010;184:6309–19.

20. Kessler JH, Melief CJM. Identification of T-cell epitopes for cancer
immunotherapy. Leukemia. 2007;21:1859–74.

21. Tonecka K, Plich Z, Ramji K, Taclak B, Kiraga L, Krol M, et al. Immune cells as
targets and tools for cancer therapy. Immunotherapy. 2017;3:143.

22. Clifton GT, Mittendorf EA, Peoples GE. Adjuvant HER2/neu peptide cancer
vaccines in breast cancer. Immunotherapy. 2015;7:1159–68.

23. Morello A, Sadelain M, Adusumilli PS. Mesothelin-targeted CARs: driving T
cells to solid tumors. Cancer Discov. 2016;6:133–46.

24. Butterfield LH. Lessons learned from cancer vaccine trials and target antigen
choice. Cancer Immunol Immunother. 2016;65:805–12.

25. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM,
Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW, et al. Vaccination
against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J
Med. 2009;361:1838–47.

26. Pavlopoulou A, Spandidos DA, Michalopoulos I. Human cancer databases.
Oncol Rep. 2015;33:3–18.

27. Jongeneel V. Towards a cancer immunome database. Cancer Immun. 2001;1:3.
28. Li H, He Y, Ding G, Wang C, Xie L, Li Y. dbDEPC: a database of differentially

expressed proteins in human cancers. Nucleic Acids Res. 2010;38:D658–64.
29. He Y, Zhang M, Ju Y, Yu Z, Lv D, Sun H, et al. dbDEPC 2.0: updated

database of differentially expressed proteins in human cancers. Nucleic
Acids Res. 2012;40:D964–71.

30. Almeida LG, Sakabe NJ, deOliveira AR, Silva MC, Mundstein AS, Cohen T,
et al. CTdatabase: a knowledge-base of high-throughput and curated data
on cancer-testis antigens. Nucleic Acids Res. 2009;37:D816–9.

31. Olsen LR, Tongchusak S, Lin H, Reinherz EL, Brusic V, Zhang GL. TANTIGEN: a
comprehensive database of tumor T cell antigens. Cancer Immunol
Immunother. 2017;66:731–5.

32. Flower DR. Designing immunogenic peptides. Nat Chem Biol. 2013;9:749–53.
33. Patronov A, Doytchinova I. T-cell epitope vaccine design by

immunoinformatics. Open Biol. 2013;3:120139.
34. Flower DR, Macdonald IK, Ramakrishnan K, Davies MN, Doytchinova IA.

Computer aided selection of candidate vaccine antigens. Immunome Res.
2010;6(Suppl 2):S1.

35. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective
antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007;8:4.

36. Hellberg S, Sjöström M, Skagerberg B, Wold S. Peptide quantitative
structure-activity relationships, a multivariate approach. J Med Chem.
1987;30:1126–35.

37. Nyström Å, Andersson PM, Lundstedt T. Multivariate data analysis of
topographically modified á-melanotropin analoques using auto and cross
auto covariances (ACC). Quant Struct Act Relat. 2000;19:264–9.

38. Tappeiner E, Finotello F, Charoentong P, Mayer C, Rieder D, Trajanoski Z.
TIminer: NGS data mining pipeline for cancer immunology and
immunotherapy. Bioinformatics. 2017;33:3140–1.

39. Bjerregaard AM, Nielsen M, Hadrup SR, Szallasi Z, Eklund AC. MuPeXI:
prediction of neo-epitopes from tumor sequencing data. Cancer Immunol
Immunother. 2017;66:1123–30.

40. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage:
ontogeny and function of dendritic cells and their subsets in the steady
state and the inflamed setting. Annu Rev Immunol. 2013;31:563–604.

41. Tesfatsion DA. Dendritic cell vaccine against leukemia: advances and
perspectives. Immunotherapy. 2014;6(4):485–96.

42. Datta J, Berk E, Cintolo J, Xu S, Roses R, Czerniecki B. Rationale for a
multimodality strategy to enhance the efficacy of dendritic cell-based
Cancer immunotherapy. Front Immunol. 2015;6:271.

43. Rai J, Lok KI, Mok CY, Mann H, Noor M, Patel P, Flower DR.
Immunoinformatic evaluation of multiple epitope ensembles as vaccine
candidates: E coli 536. Bioinformation. 2012;8(6):272–5.

44. Molero-Abraham M, Lafuente EM, Flower DR, Reche PA. Selection of
conserved epitopes from hepatitis C virus for pan-populational stimulation
of T-cell responses. Clin Dev Immunol. 2013;2013:601943.

45. Sheikh QM, Gatherer D, Reche PA, Flower DR. Towards the knowledge-
based design of universal influenza epitope ensemble vaccines.
Bioinformatics. 2016;32(21):3233–9.

46. Dimitrov I, Atanasova M, Patronov A, Flower DR, Doytchinova I. A cohesive
and integrated platform for immunogenicity prediction. Methods Mol Biol.
2016;1404:761–70.

Doytchinova and Flower BMC Immunology  (2018) 19:11 Page 8 of 9

https://epi.grants.cancer.gov/events/rare-cancers/
http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf
http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf
http://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk
http://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk


47. Doytchinova IA, Guan P, Flower DR. EpiJen: a server for multistep T cell
epitope prediction. BMC Bioinformatics. 2006;7:131.

48. Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of
therapies using chimeric antigen receptor-expressing T cells. Immunol Rev.
2014;257:107–26.

49. Wurch T, Pierré A, Depil S. Novel protein scaffolds as emerging therapeutic
proteins: from discovery to clinical proof-of-concept. Trends Biotechnol.
2012;30:575–82.

50. Simeon R, Chen Z. In vitro-engineered non-antibody protein therapeutics.
Protein Cell. 2018;9:3–14.

51. Flower DR. The lipocalin protein family: structure and function. Biochem J.
1996;318:1–14.

52. Gebauer M, Skerra A. Engineered protein scaffolds as next-generation
antibody therapeutics. Curr Opin Chem Biol. 2009;13:245–55.

53. Ansari HR, Flower DR, Raghava GP. AntigenDB: an immunoinformatics
database of pathogen antigens. Nucleic Acids Res. 2010;38(Database
issue):D847–53.

54. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR,
Wheeler DK, Gabbard JL, Hix D, Sette A, Peters B. The immune epitope
database (IEDB) 3.0. Nucleic Acids Res. 2015;43(Database issue):D405–12.

55. Chattopadhyay AK, Nasiev D, Flower DR. A statistical physics perspective on
alignment-independent protein sequence comparison. Bioinformatics. 2015;
31(15):2469–74.

56. Akhoon BA, Slathia PS, Sharma P, Gupta SK, Verma V. In silico identification
of novel protective VSG antigens expressed by Trypanosoma brucei and an
effort for designing a highly immunogenic DNA vaccine using IL-12 as
adjuvant. Microb Pathog. 2011;51(1-2):77–87.

57. Gupta A, Chaukiker D, Singh TR. Comparative analysis of epitope
predictions: proposed library of putative vaccine candidates for HIV.
Bioinformation. 2011;5(9):386–9.

58. Barh D, Misra AN, Kumar A, Vasco A. A novel strategy of epitope design in
Neisseria gonorrhoeae. Bioinformation. 2010;5(2):77–85.

59. Seyed N, Zahedifard F, Safaiyan S, Gholami E, Doustdari F, Azadmanesh K,
Mirzaei M, Saeedi Eslami N, Khadem Sadegh A, Eslami Far A, Sharifi I, Rafati
S. In silico analysis of six known Leishmania major antigens and in vitro
evaluation of specific epitopes eliciting HLA-A2 restricted CD8 T cell
response. PLoS Negl Trop Dis. 2011;5(9):e1295.

60. Wieser A, Romann E, Magistro G, Hoffmann C, Nörenberg D, Weinert K,
Schubert S. A multiepitope subunit vaccine conveys protection against
extraintestinal pathogenic Escherichia coli in mice. Infect Immun. 2010;
78(8):3432–42.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Doytchinova and Flower BMC Immunology  (2018) 19:11 Page 9 of 9


	Abstract
	Background
	Classification of tumour antigens
	Databases of cancer immunogens
	Servers for prediction of cancer immunogens
	Antigen selection for cell-based cancer treatment: subunit and epitope ensemble vaccines delivered by dendritic cell and antigen selection for CAR T-cell therapy

	Discussion
	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

