57 research outputs found

    Dissolved noble gases and stable isotopes as tracers of preferential fluid flow along faults in the Lower Rhine Embayment, Germany

    Get PDF
    Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low ÎŽ2H and ÎŽ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7 × 10−4 cm3 (STP) g–1 ± 2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ∌107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids

    Increased fluid flow activity in shallow sediments at the 3 km Long Hugin Fracture in the central North Sea

    Get PDF
    The North Sea hosts a wide variety of seafloor seeps that may be important for transfer of chemical species, such as methane, from the Earth's interior to its exterior. Here we provide geochemical and geophysical evidence for fluid flow within shallow sediments at the recently discovered, 3-km long Hugin Fracture in the Central North Sea. Although venting of gas bubbles was not observed, concentrations of dissolved methane were significantly elevated (up to six-times background values) in the water column at various locations above the fracture, and microbial mats that form in the presence of methane were observed at the seafloor. Seismic amplitude anomalies revealed a bright spot at a fault bend that may be the source of the water column methane. Sediment porewaters recovered in close proximity to the Hugin Fracture indicate the presence of fluids from two different shallow (<500m) sources: (i) a reduced fluid characterized by elevated methane concentrations and/or high levels of dissolved sulfide (up to 6 mmol L−1), and (ii) a low-chlorinity fluid (Cl ∌305 mmol L−1) that has low levels of dissolved methane and/or sulfide. The area of the seafloor affected by the presence of methane-enriched fluids is similar to the footprint of seepage from other morphological features in the North Sea

    Characterizing the Potential for Injection-Induced Fault Reactivation Through Subsurface Structural Mapping and Stress Field Analysis, Wellington Field, Sumner County, Kansas

    Get PDF
    Kansas, like other parts of the central U.S., has experienced a recent increase in seismicity. Correlation of these events with brine disposal operations suggests pore fluid pressure increases are reactivating preexisting faults, but rigorous evaluation at injection sites is lacking. Here we determine the suitability of CO2 injection into the Cambrian‐Ordovician Arbuckle Group for long‐term storage and into a Mississippian reservoir for enhanced oil recovery in Wellington Field, Sumner County, Kansas. To determine the potential for injection‐induced earthquakes, we map subsurface faults and estimate in situ stresses, perform slip and dilation tendency analyses to identify well‐oriented faults relative to the estimated stress field, and determine the pressure changes required to induce slip at reservoir and basement depths. Three‐dimensional seismic reflection data reveal 12 near‐vertical faults, mostly striking NNE, consistent with nodal planes from moment tensor solutions from recent earthquakes in the region. Most of the faults cut both reservoirs and several clearly penetrate the Precambrian basement. Drilling‐induced fractures (N = 40) identified from image logs and inversion of earthquake moment tensor solutions (N = 65) indicate that the maximum horizontal stress is approximately EW. Slip tendency analysis indicates that faults striking <020° are stable under current reservoir conditions, whereas faults striking 020°–049° may be prone to reactivation with increasing pore fluid pressure. Although the proposed injection volume (40,000 t) is unlikely to reactive faults at reservoir depths, high‐rate injection operations could reach pressures beyond the critical threshold for slip within the basement, as demonstrated by the large number of injection‐induced earthquakes west of the study area

    Mechanisms for CO2 Leakage Prevention – A Global Dataset of Natural Analogues

    Get PDF
    AbstractNatural CO2 reservoirs have similar geological trapping mechanisms as required for CO2 storage sites and often have held CO2 for a geological period of time without any indication of leakage. Yet, migration of CO2 from reservoirs to the surface is also common. 49 natural CO2 reservoirs have been analysed to provide an overview of factors that are important for (1) retention of CO2 in the subsurface and (2) leakage of CO2 from the reservoir. Results indicate that overpressure of the overburden and the state of CO2 in the reservoir influence the likelihood of migration and hence the performance of reservoirs
    • 

    corecore