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Abstract Groundwater in shallow unconsolidated sedimen-
tary aquifers close to the Bornheim fault in the Lower Rhine
Embayment (LRE), Germany, has relatively low δ2H and
δ18O values in comparison to regional modern groundwater
recharge, and 4He concentrations up to 1.7×10−4 cm3 (STP)
g–1±2.2 % which is approximately four orders of magnitude
higher than expected due to solubility equilibrium with the
atmosphere. Groundwater age dating based on estimated in
situ production and terrigenic flux of helium provides a
groundwater residence time of ∼107 years. Although fluid
exchange between the deep basal aquifer system and the upper
aquifer layers is generally impeded by confining clay layers
and lignite, this study’s geochemical data suggest, for the first
time, that deep circulating fluids penetrate shallow aquifers in
the locality of fault zones, implying that sub-vertical fluid
flow occurs along faults in the LRE. However, large
hydraulic-head gradients observed across many faults suggest
that they act as barriers to lateral groundwater flow. Therefore,
the geochemical data reported here also substantiate a conduit-
barrier model of fault-zone hydrogeology in unconsolidated
sedimentary deposits, as well as corroborating the concept that
faults in unconsolidated aquifer systems can act as loci for
hydraulic connectivity between deep and shallow aquifers.
The implications of fluid flow along faults in sedimentary

basins worldwide are far reaching and of particular concern
for carbon capture and storage (CCS) programmes, impacts of
deep shale gas recovery for shallow groundwater aquifers, and
nuclear waste storage sites where fault zones could act as
potential leakage pathways for hazardous fluids.
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Introduction

Large hydraulic head gradients observed across fault zones in
unconsolidated sedimentary aquifers suggest that they often
form effective barriers to lateral groundwater flow (Rawling
et al. 2001; Bense and Van Balen 2004; Mayer et al. 2007;
Bense et al. 2013). These barriers are created by the juxtapo-
sition of aquifer-confining units such as clay beds with aquifer
media at the location of the fault (Mailloux et al. 1999) and/or
fault zone deformation processes such as cataclasis (Fulljames
et al. 1997), diagenesis (Chan et al. 2000; Dewhurst and Jones
2003) and clay smearing (Lehner and Pilaar 1997; Bense et al.
2003; Egholm et al. 2008), which reduce the permeability of
the fault zone itself. The role of faults as barriers to ground-
water movement has been widely described in the literature
but much less documented is the ability of faults to simulta-
neously act as conduits for sub-vertical flow along the fault
(Roberts et al. 1996; Wiprut and Zoback 2000; Bense and
Person 2006). Hydraulic head observations are typically not
sufficient to infer the magnitude and direction of fluid flow
along faults, usually due to the sparse distribution of observa-
tion boreholes. However, the application of noble gas tracers
has been particularly useful in characterizing fluid flow asso-
ciated with faults as conduit-barrier structures in both deep
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(Wiersberg and Erzinger 2011) and shallow (Kulongoski et al.
2003, 2005) settings. In general, the potential for fluid migration
along faults is an important consideration for water resources
management as well as proposed carbon capture and storage
(CCS) programmes (Shipton et al. 2004; Bickle et al. 2007;
Gilfillan et al. 2009), shale gas recovery from deep hydrological
environments and its implications for shallow groundwater qual-
ity (Cassiat et al. 2013), and nuclear waste storage sites (Flint
et al. 2001; Dublyansky and Spötl 2010) where faults could act
as potential leakage pathways for hazardous fluids.

Geochemical tracers are useful tools for investigating the
origin and residence time of deep circulating fluids in aquifer
systems worldwide (Kipfer et al. 2002; Lippmann et al. 2005;
Ma et al. 2005). Dissolved noble gases and stable isotopes are
particularly useful in studies of aquifer systems that contain
pre-Holocene ‘palaeo’ groundwater (e.g. Vaikmäe et al. 2001)
or fluids that have a deep crustal origin such as those observed
in the Great Artesian Basin in Australia (Torgersen and Clarke
1985, 1987; Bethke et al. 1999), the Paris Basin in France
(Marty et al. 1993, 2003; Castro et al. 1998; Lavastre et al.
2010) and the Witwatersrand Basin in South Africa
(Lippmann et al. 2003; Lippmann-Pipke et al. 2011).
Dissolved helium has been used extensively for estimating
groundwater residence times and tracing the origin of crustal
fluids (Torgersen et al. 1992; Ballentine et al. 2002; Gardner
et al. 2012). Deep circulating groundwater typically has a
radiogenic source of 4He from in situ α-decay of U-Th series
elements. However, modern groundwater (>10 years) can also
exhibit high concentrations of helium which originate from
previously trapped reservoirs in the subsurface (Solomon
et al. 1996). Helium enrichment in palaeo groundwater is re-
ported in the literature at up to six orders of magnitude higher
than expected due to solubility equilibrium with the atmo-
sphere (Andrews and Lee 1979; Castro et al. 1998; Bethke
et al. 1999). Terrigenic 3,4He is also significant in deep circu-
lating fluids (Griesshaber et al. 1992; Stute et al. 1992;
Ballentine and Burnard 2002; Castro 2004). The 3He/4He iso-
tope ratio is often used to distinguish between helium of crust-
al or mantle origin (Oxburgh et al. 1986; Sano et al. 1986;
Kulongoski et al. 2003, 2005). However, due to groundwater
typically containing helium from several different sources
(Solomon et al. 1996; Zhou and Ballentine 2006), helium
age dating is usually only used as a technique for estimating
groundwater age rather than a precise quantitative tool (Stute
et al. 1992; Castro et al. 2000). More recently, however,
Torgersen (2010) suggested that it is now possible to deter-
mine uncertainty limits associated with crustal fluxes of
helium using the increased number of published data sets, thus
improving the accuracy of 4He age estimates.

In the unconsolidated sedimentary aquifers of the Lower
Rhine Embayment (LRE), Germany, where large hydraulic
gradients exist across many faults, suggesting that they act as
barriers to groundwater flow, thermal anomalies in aquifer

units flanking the Rurrand fault have provided evidence for
significant fault-parallel flow (Bense et al. 2008). Here, hydro-
geochemical evidence is presented for the upward migration of
deep crustal fluids along the Bornheim fault in the LRE.

Study area

The Lower Rhine Embayment forms part of the Roer Valley
Rift System (RVRS), which is the southward extension of the
North Sea Basin and part of a Cenozoic mega-rift system that
crosses western and central Europe (Ziegler 1994). The
German region of the LRE (Fig. 1) covers an area of 3,
800 km2 and contains approximately 1,300 m of Oligocene
to Pleistocene unconsolidated siliciclastic sediments that form
a highly complex multi-layered aquifer sequence within six
tectonic blocks. The central Erft block is adjacent to the Köln
block to the east and the Rur block to the west, whilst the
Krefeld and Venlo blocks are situated northeast and northwest,
respectively. Each tectonic block consists of 5–15 different
aquifers to a depth of 200 m and the Erft block has as many
as 21 separate aquifer units to a depth of approximately 400m.
The LRE is intersected by numerous NW–SE-striking fault
zones which have a significant impact on regional groundwa-
ter flow patterns (Wallbraun 1992). The formation of the LRE
aquifer system began during the Oligocene and is described in
great detail by Schäfer et al. (1996). The LRE primarily con-
sists of Oligocene, Miocene and Pliocene marine sediments
and the more recent Pleistocene sediments are mainly fluvial
deposits derived from the Rhenish Massif to the south
(Schäfer et al. 2005). The sediments derived purely from the
RhenishMassif are comprised of gravels that are characterised
by having >90 % quartz material in the coarse gravel fraction
and the remaining sediment is made up of quartzite (Boenigk
2002). Highly porous loess soils have formed due to the ac-
cumulation of silts, sands and clays, and these overlay the
Pleistocene deposits (Kemna 2008). Boenigk (2002) and
Kemna (2008) provide detailed mineralogical analyses of
the shallow Pleistocene deposits, and Pliocene and lower
Pleistocene deposits, respectively. The LRE contains two
commercially important lignite seams. The main lignite seam

�Fig. 1 a Location of the study area in central Europe. b Hydraulic head
distribution within the deeper aquifer units of the Lower Rhine
Embayment (LRE), Germany, with spatial reference to the Hambach,
Garzweiler and Inden open cast lignite mines. Contour increments vary
due to the lower hydraulic head gradients that exist towards the River
Rhine. A cone of depression is evident below the Hambach and
Garzweiler mines, and the major graben faults frequently act as barriers
to lateral groundwater flow. The shallow aquifer system is less impacted
by lignite mine dewatering due to confining layers of clay that create
relatively shallow perched aquifer conditions in many areas including
the Brühl region. The observation boreholes not illustrated on the map
are all situated to the north in an area less impacted by lignite mining

100 Hydrogeol J (2016) 24:99–108



Hydrogeol J (2016) 24:99–108 101



T
ab

le
1

H
yd
ro
ge
oc
he
m
ic
al
da
ta
fo
r
th
e
L
ow

er
R
hi
ne

E
m
ba
ym

en
t,
G
er
m
an
y

B
or
eh
ol
e
ID

Fi
lte
r
de
pt
h
(m

)
H
el
iu
m

(c
m

3
ST

P
g–

1
)

E
xc
es
s
ai
r

(%
Δ
N
e)

N
G
T
(°
C
)

δ1
8
O

δ2
H

C
a2

+
M
g2

+
N
a+

K
+

H
C
O
3
−

SO
4
2
−

C
l−

N
O
3
−

V
S
M
O
W

(‰
)

(m
g
L
−1
)

28
/9
07
64
1

25
.2

4.
64
E
-0
8

5.
8

10
.7

−7
.2
5

−4
9.
4

11
4.
0

13
.7

21
.2

5.
5

35
4

72
.6

37
.5

0.
2

28
/8
06
88
2

14
6.
2

1.
14
E
-0
7

35
.5

10
.1

−7
.8
4

−5
2.
1

39
.2

8.
3

13
.0

5.
8

20
1

9.
1

5
0.
2

28
/9
07
89
2

26
.7

5.
39
E
-0
8

5.
4

12
.0

−7
.6
5

−4
9.
5

77
.4

10
.4

8.
6

2.
3

25
0

37
.1

15
.2

0.
2

28
/8
06
92
2

42
.0

5.
09
E
-0
8

24
.8

13
.7

−7
.1
9

−4
9.
2

98
.5

16
.5

7.
5

1.
5

40
3

2.
1

7.
81

0.
9

27
/8
31
79
1

59
.5

4.
72
E
-0
8

14
.5

15
.0

−7
.4
0

−5
2.
9

15
2.
0

29
.8

54
.7

1.
8

59
2

15
0.
0

84
.7

19
4.
8

27
/9
37
92
1

8.
3

5.
59
E
-0
8

26
.7

14
.2

−6
.4
0

−4
7.
9

16
6.
0

28
.1

13
.1

1.
5

53
7

78
.0

27
.7

20
.8

28
/9
17
19
1

25
.8

4.
58
E
-0
8

12
.9

15
.1

−7
.4
3

−5
1.
3

12
0.
0

18
.3

16
.1

2.
5

26
2

94
.3

49
.8

52
.7

28
/8
06
94
1

17
.0

5.
01
E
-0
8

14
.8

14
.8

−7
.3
3

−5
2.
2

19
2.
0

25
.9

38
.2

3.
6

41
5

15
8.
0

62
.3

13
3.
2

28
/8
12
53
1

31
.0

4.
86
E
-0
8

12
.3

13
.9

−7
.3
2

−5
0.
7

19
9.
0

25
.7

9.
3

2.
0

37
2

13
3.
0

10
6

69
.9

07
/3
55
57
1

21
.3

5.
58
E
-0
8

17
.8

14
.3

−7
.4
8

−5
3.
2

17
4.
0

23
.5

15
.9

1.
1

34
2

18
5.
0

41
.7

54
.4

27
/9
37
88
1

19
.0

5.
49
E
-0
8

25
.1

14
.3

−7
.2
8

−5
1.
1

20
3.
0

33
.0

17
.8

1.
6

39
0

20
2.
0

85
.6

59
.3

27
/9
37
49
1

25
.9

5.
40
E
-0
8

14
.6

10
.0

−7
.4
5

−5
2.
4

18
3.
0

30
.5

18
.0

1.
7

41
5

13
8.
0

84
.4

52
.2

21
/8
63
90
1

34
.4

4.
65
E
-0
8

18
.8

13
.0

−7
.5
7

−5
3.
6

17
9.
0

23
.9

21
.9

1.
3

37
2

12
8.
0

75
.3

73
.9

21
/8
61
58
1

33
.4

3.
91
E
-0
8

7.
8

12
.0

−7
.6
6

−5
2.
8

19
6.
0

26
.3

18
.0

3.
0

35
4

15
0.
0

10
7

57
.1

08
/6
58
08
6

5.
6

3.
51
E
-0
8

8.
3

11
.9

−7
.3
8

−4
8.
2

83
.0

14
.4

24
.9

16
.9

14
6

99
.8

64
.3

44
.7

27
/9
57
82
2

28
.1

1.
03
E
-0
6

-
11
.9

−7
.1
2

−5
0.
7

22
9.
0

35
.7

26
.0

1.
5

42
1

25
9.
0

76
.9

92
.1

27
/9
57
82
3

38
.7

4.
37
E
-0
6

22
.0

13
.9

−7
.4
2

−5
1.
9

19
9.
0

31
.4

31
.7

1.
8

43
3

24
9.
0

75
.6

3.
7

01
/0
40
24
4

12
.8

5.
59
E
-0
8

24
.4

14
.9

−7
.1
7

−4
9.
2

68
.3

9.
5

21
.9

3.
3

92
99
.4

33
63
.7

28
/8
06
88
1

67
.0

5.
08
E
-0
8

21
.6

12
.6

−7
.1
0

−4
7.
9

35
.2

5.
2

14
.4

2.
2

43
86
.1

26
.1

2.
9

28
/9
00
40
1

16
.4

3.
67
E
-0
8

7.
6

12
.1

−7
.5
6

−5
2.
8

82
.7

12
.8

25
.4

4.
9

11
6

12
5.
0

54
.4

33
.2

28
/9
00
17
1

54
.0

5.
39
E
-0
8

18
.4

6.
9

−7
.7
2

−5
1.
8

54
.3

17
.3

22
.3

9.
4

24
12
2.
0

46
.4

89
.4

28
/8
16
06
1

41
.0

5.
72
E
-0
8

31
.8

13
.5

−7
.5
8

−5
1.
8

61
.9

18
.0

39
.3

7.
2

31
17
6.
0

69
.3

60
.2

28
/8
16
01
1

19
.5

5.
15
E
-0
8

22
.6

15
.1

−7
.0
9

−4
7.
1

63
.7

8.
0

15
.2

5.
0

18
68
.2

29
.6

15
6.
3

28
/8
16
01
2

33
.0

4.
40
E
-0
8

8.
2

11
.8

−7
.4
5

−5
0.
7

76
.7

8.
8

19
.1

5.
2

18
21
6.
0

68
.1

1.
5

28
/9
00
60
1

36
.0

4.
51
E
-0
8

7.
9

14
.5

−7
.1
3

−4
9.
0

82
.4

16
.1

19
.9

4.
1

6
11
1.
0

57
.1

19
0.
8

21
/9
60
51
1

39
.1

4.
76
E
-0
8

8.
3

10
.1

−7
.4
4

−5
2.
3

74
.6

12
.5

28
.6

11
.9

11
0

92
.7

75
.6

54

21
/0
40
33
1

38
.1

4.
57
E
-0
8

7.
9

10
.2

−7
.5
0

−5
2.
0

59
.7

9.
3

18
.9

2.
9

49
74
.1

42
.2

76
.6

28
/9
08
38
1

9.
0

4.
18
E
-0
8

10
.8

11
.0

−7
.3
8

−5
0.
8

10
3.
0

16
.1

25
.8

1.
6

92
13
5.
0

52
.7

12
5.
7

80
/0
30
12
8

14
.5

6.
01
E
-0
8

11
.6

13
.5

−7
.4
1

−5
0.
5

73
.2

14
.9

81
.7

6.
0

92
19
4.
0

12
4

18
.7

27
/9
57
98
2

54
.4

7.
36
E
-0
6

20
.7

8.
7

−7
.0
0

−5
0.
5

12
4.
0

37
.9

12
8.
0

14
.7

22
0

33
5.
0

20
5

0.
2

07
/3
52
72
1

21
.0

2.
58
E
-0
6

35
.8

12
.0

−7
.4
5

−5
2.
3

13
9.
0

21
.9

66
.4

10
.9

28
1

24
0.
0

91
.5

55
.3

28
/9
07
27
1

35
.8

8.
63
E
-0
6

31
.8

6.
1

−8
.1
2

−5
5.
4

50
.8

11
.4

99
.4

15
.0

40
9

36
.4

34
.5

0.
2

27
/9
57
82
4

76
.6

7.
27
E
-0
5

74
.6

5.
2

−8
.5
7

−5
9.
1

-
8.
5

42
6.
0

9.
7

-
77
.5

36
0

0.
2

27
/9
58
06
2

15
0.
0

1.
28
E
-0
4

29
.3

11
.1

−9
.1
8

−6
2.
4

70
.7

73
.3

1,
70
0.
0

33
.5

1,
17
1

28
0.
0

2,
20
0

0.
2

27
/9
58
06
3

16
9.
5

1.
69
E
-0
4

27
.5

16
.7

−9
.0
3

−6
2.
7

83
.3

85
.7

1,
86
0.
0

38
.7

1,
31
2

30
6.
0

2,
46
0

0.
2

102 Hydrogeol J (2016) 24:99–108



has a thickness of up to 100 m and the second ‘upper’ seam
has a thickness of up to 40 m (Hager 1993). The Miocene
lignite deposits of the LRE form one of the largest reserves
in Europe with an estimated 55,000 Mt (Hager 1993) with an
overburden thickness up to 300 m (RWE Power AG). The
geological structures that underlie the Oligocene aquifers be-
low a depth of 400–800 m are less well known. The oldest
sequences identified from borehole records are Palaeozoic. It
is known that Carboniferous strata with a total thickness of up
to 2,500 m is underlain by approximately 2,000 m of clastic
sedimentary rocks, limestone and evaporites, and a Devonian
sequence of unknown thickness and composition (Geluk et al.
1994). Lower Jurassic sandstone and claystone sequences
with a total thickness of up to 1,500 m are found beneath the
Cenozoic sand deposits, and they overlie Permian-Triassic
sandstone and conglomerate material (Geluk et al. 1994).

Methods

Observation boreholes in the LRE were selected at locations
in close proximity to faults, and where some historical moni-
toring records of well head parameters and hydrochemistry
were available. Physical limitations of the pumping equipment
restricted borehole selection and generally only shallow
(<100 m) aquifer units were sampled. In total 73 piezometers
were sampled from 64 observation boreholes during three
separate sampling campaigns totalling 23 days in the field.
However, only 35 piezometers were successfully sampled
for the full range of noble gas, stable isotope and
hydrochemical analyses. Boreholes were pumped using a
Grundfos MP1 submersible pump and purged to the equiva-
lent of three borehole volumes before groundwater samples
were collected. All the observation boreholes were fully cased
with filters positioned at specific inflow horizons. The depth
of each borehole filter is given in Table 1. Groundwater sam-
ples were collected in copper tubes, using clear Portex™ con-
nective tubing for noble gas (He, Ne, Ar, Kr and Xe) analyses
following the method described by Beyerle et al. (2000) and
back pressure was applied to maintain hydrostatic pressure
during sampling using a simple ball valve attached to the
outflow pipe of the copper tube. Generally, very few
gas bubbles were encountered during sampling with
the exception of observation borehole 958063 in the
Brühl region, which exsolved large quantities of gas
during sampling primarily due to a high dissolved CO2

content.
Groundwater samples were also collected and analysed for

major ions (Ca2+, Na+, Mg2+, K+, HCO3
−, SO4

2−, Cl− and
NO3

−) by the Erftverband at their laboratories in Bergheim,
Germany using a range of analytical instruments, as well as
for water isotopes (δ2H and δ18O) at the University of East
Anglia (UEA), UK. All Noble gas analyses were conducted at

the UEA Stable Isotope Laboratory using a quadrupole mass
analyser operated in static mode and isotope dilution mass
spectrometry. The analytical procedure is described in de-
tail by Poole et al. (1997). Additionally, a small number
of groundwater samples from the Brühl region were
analysed for 14C (National Science Foundation grant
NSF-EAR 0609809), but pMC was not detected, suggest-
ing that the groundwater age was beyond the dating range
of 14C.

Results and discussion

Stable isotope data (Fig. 2a) show that the majority of the
observation boreholes sampled in the LRE contain groundwa-
ter recharge of meteoric origin. The main cluster of data points
shown in Fig. 2a displays a limited range of δ2H and δ18O
values but exhibits a wide range of hydrochemical composi-
tions illustrated by the Durov plot (Fig. 2b) that is typical of
modern groundwater from silicate aquifers in which no single
mineral dominates weathering reactions (Appelo and Postma
2005). Generally, the isotopic composition of groundwater
from the shallow aquifers of the LRE is characteristic of
present-day precipitation for this region (IAEA 2006)
confirming a ‘modern’ Holocene recharge. However, seven
groundwater samples have relatively low δ18O values, where-
as two samples have relatively high δ18O values and display a
typical evaporation trend. The small cluster of samples with
δ18O values between −9.0 and −9.2 ‰ originates in a single
observation borehole but at slightly different depths.
Hydrochemical analysis of these samples show that the ionic
composition is Na–Cl–(HCO3) dominated with Cl− concen-
tration up to 2,460 mg L−1. This groundwater appears to be of
meteoric origin as the samples plot on the global meteoric
water line (GMWL), implying that recharge must have oc-
curred under cooler climatic conditions than those that pre-
dominate today, and therefore strongly suggests the presence
of pre-Holocene ‘palaeo’ groundwater at shallow depth. This
groundwater was primarily observed in the Brühl region of the
LRE. Previous studies by Schenk (1981, 1982) identified the
same body of anomalous groundwater near the Bornheim
fault in the Brühl region using hydrochemical data but, with-
out the application of geochemical tracers, Schenk (1981,
1982) was unable to establish the age or origin of the fluid.
New hydrochemical data suggest that the palaeo groundwater
identified in the Brühl region evolved in a hydrogeological
setting that was significantly different from the present-day
shallow aquifer system. The groundwater appears to have
evolved under conditions that led to a low Ca2+ concentration
but relatively high HCO3

− concentration (Fig. 2c). For
groundwater to follow this evolutionary path, it would be
necessary to assume a high production rate of H+ ions in the
aquifer. A mechanism such as the oxidation of pyrite (FeS2)
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could provide the source of the H+ ions, but it is more
likely that the source of H+ ions originates in the produc-
tion of CO2 in the subsurface because the Brühl ground-
water samples are known to have high dissolved CO2 con-
centrations up to 1,125 mg L−1. Coalification of lignite is a
possible source of CO2 which would in turn generate the
necessary concentration of H+ ions to account for the ob-
served trend of low Ca2+ and relatively high HCO3

−

displayed by the palaeo groundwater. The chemical half-
reaction involving the diagenesis of lignite that produces
CO2 is given by the following equation:

CnH2O→
n

2
CO2 gð Þ þ 1

2
CnH2nþ2

Under anaerobic groundwater conditions, the oxidation of
organic matter is possibly achieved via SO4

2− reduction.

Measured concentrations of dissolved noble gases (Ne, Ar,
Kr and Xe) were interpreted using NOBLE90 (Aeschbach-
Hertig et al. 2000; Peeters et al. 2003) in terms of noble gas
temperatures (NGTs) and excess air (see Table 1). Comparing
NGTs and excess air concentrations to hydrochemical and
stable isotope data, it is possible to identify two groundwater
types in terms of the long-term recharge history. Modern
groundwater recharge is characterised as having lower excess
air concentrations in the range of 5–36%ΔNe and an average
NGT of 12.5±1.3 °C. Palaeo groundwater generally exhibits
higher excess air concentrations from 32–75 % ΔNe and a
lower NGT of 5.6±1.7 °C. Erftverband weather station data
show that the current weighted-mean-annual surface air tem-
perature for the region is 10.8 °C, which is 1.7 °C lower than
the calculated mean NGT for modern groundwater. Although
the uncertainty limits for the calculated NGT could explain

Fig. 2 a Isotopic composition of groundwater in the Lower Rhine
Embayment (LRE) with reference to the global meteoric water line
(GMWL). Palaeo groundwater has relatively low δ2H and δ18O values
in comparison to modern recharge of meteoric origin. b Durov plot
displaying the major ion composition of groundwater from the LRE.
The ionic composition of LRE palaeo groundwater is Na–Cl–(HCO3)
dominated with Cl− concentration up to 2,460 mg L−1. The Durov plot
identifies processes such as cation exchange as well as graphically

illustrating subtle differences in the hydrochemical composition of
modern groundwater recharge. c Cross plot of HCO3

−+SO4
2− against

Ca2+. Palaeo groundwater exhibits an anomalous hydrochemical
evolution with low Ca2+ and relatively high HCO3

− concentrations that
require a high production rate of H+ ions in the aquifer. Processes such as
sulphate reduction can also cause deviations from the 1:1 ratio mixing
line
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most of this difference, it is possible that NOBLE90 does not
adequately describe all the mechanisms that control noble gas
concentrations at the water table in the LRE. The modelled
NGT of the palaeo groundwater is not inconsistent with the
findings of Andrews and Lee (1979) and Stute et al. (1995)
that show palaeo groundwater displaying a temperature de-
crease of 5–7 °C, although some studies report a smaller tem-
perature decrease in the range of 2–3 °C between Holocene
and Pleistocene recharge (e.g. Osenbrück et al. 1993).
However, although much of the data indicate late
Pleistocene recharge of meteoric origin in the Brühl region,
helium data (Fig. 3) suggest a much longer residence time. A
groundwater residence time can be estimated for the Brühl
groundwater samples using 4He concentration data. In this
study, a terrigenic-diffusive-flux-rate estimate of 4×109 atoms
4He m−2 s−1 was taken from the literature presented by
Torgersen (2010) for a similar hydrogeological setting to esti-
mate helium input to the deep groundwater system (prior to
recent upward movement along faults), but generally many
values used in our calculation were under-constrained.
Recent terrigenic helium inputs to the shallow aquifer system
are assumed to be negligible; however, a 4He age for ‘old’
groundwater at shallow depth in the Brühl region of approx-
imately 107 years was estimated, which is, thus, more ancient
than Quaternary palaeo groundwater. In situ production of
helium cannot account for the observed 4He concentrations,
so a terrigenic flux must be invoked. Further analytical work
to determine the 3He/4He ratio of Brühl groundwater would be
useful to identify the relative magmatic contribution.

A conceptual hydrogeochemical model (Fig. 4) elucidates
the observed occurrence of palaeo groundwater with a deep
crustal component at very shallow depth in the Brühl region.
In situ 4He production derived from α-decay of U-Th series
elements in the subsurface as well as a significant external flux
of helium are necessary to account for the observed helium
concentrations. Hydrochemical analysis indicates that Na+

and Cl− are dominant ions in the palaeo groundwater and that

the hydrochemical evolution involved very high PCO2 condi-
tions and a significant subsurface source of H+ ions. The oc-
currence of deep crustal fluids in shallow aquifers is associat-
ed with preferential sub-vertical flow along faults in the LRE.
Geochemical and temporal hydraulic head data suggest that
the groundwater originates from depth and flows upwards
within the fault core material. Conduit flow associated with
the Bornheim fault is possibly linked to historic groundwater
abstraction in the region. At the location of the Bornheim
fault, no thermal anomaly is observed, suggesting that either
the flux of upwelling fluid along the fault zone is not vigorous
enough to create such a thermal anomaly, or that the plume of
fluid observed was emplaced during an episode of enhanced
fluid flow caused by groundwater abstraction. A shallow
source of helium fromU-Th rich lignite deposits could explain
the decoupling of helium and heat, but excess helium is absent
from groundwater sampled at all other observation boreholes
situated near lignite seams, and additional data such as
hydrochemistry, water isotopes and 14C-dating all support
the notion of deep fluid migration from depth to shallow aqui-
fer units.

It is hypothesised that the emplacement of deep fluids at
shallow depth occurred during the active dewatering of nearby
lignite mines and that conduit flow from depth is either re-
duced or not occurring at present along the Bornheim fault.
The emplaced anomalous fluids also appear to be slow to
disperse, perhaps due to the small hydraulic head gradients
that currently exist in the shallow aquifers of the Brühl region.

The locations of three observation boreholes situated in the
Brühl region are illustrated in Fig. 4 with observation bore-
holes 352721/2 and 957982 in very close proximity to the
Bornheim fault and 958062/3 located slightly further west of
the Bornheim fault. The direction of groundwater flow is cur-
rently from southwest to northeast in the shallow aquifer sys-
tem. Observation borehole 958063 yields the highest concen-
tration of dissolved helium and the most δ18O-depleted water,
and is therefore assumed to represent the end-member

Fig. 3 Cross plot of helium concentration against δ18O. The solid lines
represent a binary mixing envelope between modern groundwater
recharge with a range of δ18O values and palaeo groundwater. The
horizontal dashed line indicates the expected helium concentration due
to solubility equilibriumwith the atmosphere at 10 °C. Fluids at a depth of

∼1,200 m in the Trias aquifer of the Paris Basin display δ18O and helium
values (data fall in the shaded area, from Marty et al. 2003) that are
similar to the palaeo groundwater observed at very shallow (<100 m)
depth in the Brühl region of the LRE
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composition. It is hypothesised that during historic periods of
groundwater abstraction and lignite mine dewatering, the di-
rection of groundwater flow in the Brühl region would have
been complex and variable from what is observed today as a
cone of depression developed below the nearby lignite mine,
which would explain why the end-member composition is
presently observed up-gradient from the Bornheim fault. As
lignite mining began to decline in the area and finally ceased,
the natural direction of groundwater flow slowly restored itself
and the plume of anomalous groundwater dispersed to the east
of the Bornheim fault in the shallow aquifer system. In addi-
tion, the geochemical data indicate that the Bornheim fault is
also acting as a barrier to groundwater flow at shallow depth
near observation borehole 352722, which could explain the
slow rate of dispersion and dilution. The deeper (>250 m)
aquifer units in the Brühl region are now influenced by the
Hambach mine to the northwest. This deep hydraulic system
is effectively isolated from the shallow aquifer system by a
thick confining layer of clay shown in the borehole records for
958062/3 and 957981/2. The extent to which groundwater
abstraction drives sub-vertical fluid flow along faults in the
LRE is unknown.

Conclusions

Palaeo groundwater with a deep crustal signature is potentially
widely distributed at depth within the LRE aquifer system, but
only observed at shallow depth in a few areas close to fault
zones. It is possible that point source emanations similar to
those described here occur frequently in close proximity to
faults, but remain undetected due to the often sparse distribu-
tion of observation boreholes near faults. The influence of
groundwater abstraction on sub-vertical conduit flow along
faults remains uncertain. Similar crustal fluids have been re-
ported at depth in numerous aquifer systems worldwide (e.g.
Marty et al. 2003) but rarely at near-surface depths (<100 m).

It is concluded that this study provides support for a con-
ceptual model of fault zone hydrogeology in unconsolidated
sedimentary aquifers in which faults can operate as both bar-
riers for lateral fluid flow, while along the fault, fluid flow can
potentially be enhanced. How exactly fluid flow patterns
around fault zones develop depends on the way hydraulic
stress is imposed onto the groundwater system, for example
by groundwater abstraction, CO2 injection or shale gas devel-
opment. In this particular study, it is demonstrated that time-

Fig. 4 Conceptual hydrochemical model illustrated by a cross section of
the Bornheim fault indicating sub-vertical flow of helium enriched fluid
from depth along the fault during periods of lignite mine dewatering (a)
and subsequent dispersal following mine restoration (b) represented by
the blue-coloured plume. The cross section illustrates the groundwater

flow dynamics in the shallow aquifer system of the Brühl region. The
deeper (>250 m) aquifer system is currently influenced by dewatering of
the Hambachmine further to the northwest but is effectively isolated from
the shallow aquifer system by a very thick confining layer of clay
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variant boundary conditions as a result of historical trends in
the pumping regime in the study area, have led to geochemical
patterns that demonstrate leakage of deep fluids into shallow
aquifers via fault zones. The observations thus provide a per-
spective on how fault zones can behave as hydrogeological
pathways between shallow and deep systems as triggered by
human activity at shallow depth (e.g. < 100 m), but similar
effects could occur via other hydrogeological mechanisms
that create hydraulic gradients near fault zones (e.g. fluid in-
jection at depth).
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