739 research outputs found
Sustainable Software Ecosystems for Open Science
Sustainable software ecosystems are difficult to build, and require concerted
effort, community norms and collaborations. In science it is especially
important to establish communities in which faculty, staff, students and
open-source professionals work together and treat software as a first-class
product of scientific investigation-just as mathematics is treated in the
physical sciences. Kitware has a rich history of establishing collaborative
projects in the science, engineering and medical research fields, and continues
to work on improving that model as new technologies and approaches become
available. This approach closely follows and is enhanced by the movement
towards practicing open, reproducible research in the sciences where data,
source code, methodology and approach are all available so that complex
experiments can be independently reproduced and verified.Comment: Workshop on Sustainable Software: Practices and Experiences, 4 pages,
3 figure
Topological Segmentation of 2D Vector Fields
Vector field topology has a long tradition as a visualization tool. The separatrices segment the domain visually into
canonical regions in which all streamlines behave qualitatively
the same. But application scientists often need more than just a
nice image for their data analysis, and, to best of our knowledge,
so far no workflow has been proposed to extract the critical
points, the associated separatrices, and then provide the induced
segmentation on the data level.
We present a workflow that computes the segmentation of the
domain of a 2D vector field based on its separatrices. We show
how it can be used for the extraction of quantitative information
about each segment in two applications: groundwater flow and
heat exchange
A High-Performance SurfaceNets Discrete Isocontouring Algorithm
Isocontouring is one of the most widely used visualization techniques.
However, many popular contouring algorithms were created prior to the advent of
ubiquitous parallel approaches, such as multi-core, shared memory computing
systems. With increasing data sizes and computational loads, it is essential to
reimagine such algorithms to leverage the increased computing capabilities
available today. To this end we have redesigned the SurfaceNets algorithm, a
powerful technique which is often employed to isocontour non-continuous,
discrete, volumetric scalar fields such as segmentation label maps. Label maps
are ubiquitous to medical computing and biological analysis, used in
applications ranging from anatomical atlas creation to brain connectomics. This
novel Parallel SurfaceNets algorithm has been redesigned using concepts from
the high-performance Flying Edges continuous isocontouring algorrithm. It
consists of two basic steps, surface extraction followed by constrained
smoothing, parallelized over volume edges and employing a double-buffering
smoothing approach to guarantee determinism. The algorithm can extract and
smooth multiple segmented objects in a single execution, producing a polygonal
(triangular/quadrilateral) mesh with points and polygons fully shared between
neighboring objects. Performance is typically one to two orders of magnitude
faster than the current sequential algorithms for discrete isosurface
extraction on small core-count commodity CPU hardware. We demonstrate the
effectiveness of the algorithm on five different datasets including human torso
and brain atlases, mouse brain segmentation, and electron microscopy
connectomics. The software is currently available under a permissive, open
source license in the VTK visualization system
First Experimental Characterization of Microwave Emission from Cosmic Ray Air Showers
We report the first direct measurement of the overall characteristics of
microwave radio emission from extensive air showers. Using a trigger provided
by the KASCADE-Grande air shower array, the signals of the microwave antennas
of the CROME (Cosmic-Ray Observation via Microwave Emission) experiment have
been read out and searched for signatures of radio emission by high-energy air
showers in the GHz frequency range. Microwave signals have been detected for
more than 30 showers with energies above 3*10^16 eV. The observations presented
in this Letter are consistent with a mainly forward-directed and polarised
emission process in the GHz frequency range. The measurements show that
microwave radiation offers a new means of studying air showers at energies
above 10^17 eV.Comment: Accepted for publication in PR
Detection of very high energy gamma-ray emission from the gravitationally-lensed blazar QSO B0218+357 with the MAGIC telescopes
Context. QSO B0218+357 is a gravitationally lensed blazar located at a
redshift of 0.944. The gravitational lensing splits the emitted radiation into
two components, spatially indistinguishable by gamma-ray instruments, but
separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a
violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes.
Aims. The spectral energy distribution of QSO B0218+357 can give information on
the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the
gamma-ray emission can also be used as a probe of the extragalactic background
light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during
the expected arrival time of the delayed component of the emission. The MAGIC
and Fermi-LAT observations were accompanied by quasi-simultaneous optical data
from the KVA telescope and X-ray observations by Swift-XRT. We construct a
multiwavelength spectral energy distribution of QSO B0218+357 and use it to
model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC,
are used to set constraints on the extragalactic background light. Results.
Very high energy gamma-ray emission was detected from the direction of QSO
B0218+357 by the MAGIC telescopes during the expected time of arrival of the
trailing component of the flare, making it the farthest very high energy
gamma-ray sources detected to date. The observed emission spans the energy
range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy
distribution of QSO B0218+357 is consistent with current extragalactic
background light models. The broad band emission can be modeled in the
framework of a two zone external Compton scenario, where the GeV emission comes
from an emission region in the jet, located outside the broad line region.Comment: 11 pages, 6 figures, accepted for publication in A&
A search for spectral hysteresis and energy-dependent time lags from X-ray and TeV gamma-ray observations of Mrk 421
Blazars are variable emitters across all wavelengths over a wide range of
timescales, from months down to minutes. It is therefore essential to observe
blazars simultaneously at different wavelengths, especially in the X-ray and
gamma-ray bands, where the broadband spectral energy distributions usually
peak.
In this work, we report on three "target-of-opportunity" (ToO) observations
of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring
event at TeV energies in 2014. These observations feature long, continuous, and
simultaneous exposures with XMM-Newton (covering X-ray and optical/ultraviolet
bands) and VERITAS (covering TeV gamma-ray band), along with contemporaneous
observations from other gamma-ray facilities (MAGIC and Fermi-LAT) and a number
of radio and optical facilities. Although neither rapid flares nor significant
X-ray/TeV correlation are detected, these observations reveal subtle changes in
the X-ray spectrum of the source over the course of a few days. We search the
simultaneous X-ray and TeV data for spectral hysteresis patterns and time
delays, which could provide insight into the emission mechanisms and the source
properties (e.g. the radius of the emitting region, the strength of the
magnetic field, and related timescales). The observed broadband spectra are
consistent with a one-zone synchrotron self-Compton model. We find that the
power spectral density distribution at Hz from the
X-ray data can be described by a power-law model with an index value between
1.2 and 1.8, and do not find evidence for a steepening of the power spectral
index (often associated with a characteristic length scale) compared to the
previously reported values at lower frequencies.Comment: 45 pages, 15 figure
Self-Association of Organic Solutes in Solution: A NEXAFS Study of Aqueous Imidazole
N K-edge near-edge X-ray absorption fine-structure (NEXAFS) spectra of imidazole in concentrated aqueous solutions have been acquired. The NEXAFS spectra of the solution species differ significantly from those of imidazole monomers in the gas phase and in the solid state of imidazole, demonstrating the strong sensitivity of NEXAFS to the local chemical and structural environment. In a concentration range from 0.5 to 8.2 mol L−1 the NEXAFS spectrum of aqueous imidazole does not change strongly, confirming previous suggestions that imidazole self-associates are already present at concentrations more dilute than the range investigated here. We show that various types of electronic structure calculations (Gaussian, StoBe, CASTEP) provide a consistent and complete interpretation of all features in the gas phase and solid state spectra based on ground state electronic structure. This suggests that such computational modelling of experimental NEXAFS will permit an incisive analysis of the molecular interactions of organic solutes in solutions. It is confirmed that microhydrated clusters with a single imidazole molecule are poor models of imidazole in aqueous solution. Our analysis indicates that models including both a hydrogen-bonded network of hydrate molecules, and imidazole–imidazole interactions, are necessary to explain the electronic structure evident in the NEXAFS spectra
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
- …