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Abstract—Vector field topology has a long tradition as a visu-
alization tool. The separatrices segment the domain visually into
canonical regions in which all streamlines behave qualitatively
the same. But application scientists often need more than just a
nice image for their data analysis, and, to best of our knowledge,
so far no workflow has been proposed to extract the critical
points, the associated separatrices, and then provide the induced
segmentation on the data level.

We present a workflow that computes the segmentation of the
domain of a 2D vector field based on its separatrices. We show
how it can be used for the extraction of quantitative information
about each segment in two applications: groundwater flow and
heat exchange.

Index Terms—vector field, topology, segmentation, groundwa-
ter, heat exchange, separatrix, transversal

I. INTRODUCTION

Vector field analysis is critically important for many physics
and environmental applications, such as combustion rate mod-
eling, material sciences, climate research, or space science. In
particular, vector field topology is one of the most popular
visualization techniques for flow data [13], [15] because it
breaks down even huge amounts of data into a compact, sparse,
and easy to comprehend description with little information
loss [4], [14], [19], [29].

The topological skeleton of a vector field contains critical
points (zeros of the velocity, Fig. 1), periodic orbits (closed
streamlines), boundary switch points (boundary points with
flow tangential to the boundary), and invariant manifolds
(streamlines going in and out of saddles or boundary switch
points). In 2D they separate the flow into simple (“parallel”)
regions called canonical regions in which all streamlines have
the same origin and destination points or zones [25], [27]. The
result is a highly compressed representation of the vector field
that still contains its important features (Fig. 2).

Even though a significant amount of research has been ded-
icated to the extraction of the separatrices, there is not much
work on the actual segmentation of the underlying domain. In
this paper, we provide a workflow and an open source imple-
mentation to extract the segmentation of the domain, which is
available at https://github.com/etiennebresciani/flowtopolopy.
The implementation makes use of the visualization toolkit
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(VTK) [17], [37], especially the existing filter vtkVectorField-
Topology to extract the separatrices, and a newly developed
algorithm that takes the separatrices as input and generates the
actual segmentation of the dataset. The latter was integrated
into the existing filter vtkPolyDataEdgeConnectivityFilter, so
that it is also available as part of the open source VTK library.
Its output contains a dataset of the type vtkPolyData, whose
underlying grid is in agreement with both the input vertices
and the separatrices of the vector field topology. It comes with
an array that assigns its connected canonical region to each
cell. The region IDs are sorted by decreasing region size. The
segmentation can be used to generate deeper insight into the
application scientist’s data because it provides a more mean-
ingful visualization than the topological skeleton itself. Among
others, it enables the computation of region transversals, which
are topological line features that intersect each streamline in
a canonical region exactly once, and a thorough quantitative
analysis of the different canonical regions, including flow rate
and residence time. We demonstrate the use of the workflow
in two environmental science applications.

In a nutshell, the contributions of this paper are as follows:
• Implementation and open source integration of a segmen-

tation algorithm respecting line boundaries.
• Workflow for 2D vector fields that generates:

– The topological segmentation,
– Transversals of each canonical region, and
– Quantitative information, such as volume, flow rate,

and duration of stay.
• Demonstration of the usefulness of the workflow in

two applications in the environmental sciences, namely
groundwater flow and heat exchange.

II. RELATED WORK

Vector field topology is a very successful visualization
tool [14], [19], [42]. The topological skeleton consisting of
first order critical points and the invariant manifolds of saddles
have been visualized for a long time [15]. Many extensions to
3D [12], higher order critical points [34], [36], [50], boundary
switch points [10], [35], periodic orbits [51], [52], discrete
topology [7], [20], [30], [40], and time-dependent flow [4],
[29] have been suggested in the literature.



Rep. node ℜ(λi) > 0,
ℑ(λi) = 0.

Rep. focus ℜ(λi) > 0,
ℑ(λi) ̸= 0.

Saddle ℜ(λ1) > 0,
ℜ(λ2) < 0.

Attr. node ℜ(λi) < 0,
ℑ(λi) = 0.

Attr. focus ℜ(λi) < 0,
ℑ(λi) ̸= 0.

Center ℜ(λi) = 0,
ℑ(λi) ̸= 0.

Fig. 1: The different types of first order non-degenerate 2D critical points visualized with line integral convolution (LIC) [5]
and arrow glyphs.

Fig. 2: Topological skeleton consisting of critical points and
separatrices.

Only recently, an open source implementation has become
broadly available to application scientists [3] through inte-
gration with VTK. So far, it only extracts 2D and 3D first
order critical points and invariant manifolds of saddles [15],
but extensions to periodic orbits and boundary switch points
are in progress.

In contrast to the myriad of works dedicated to the extrac-
tion of the separatrices, there is not much in the literature
about the actual segmentation of the domain underlying the
vector field once they are extracted. There exists however work
in which the process is the other way around, namely that
a segmentation is produced through clustering of streamlines
and then the separatrices are extracted as boundaries between
the components. This process requires a dense cover of the
whole domain with streamlines, which is significantly more
computationally expensive than the one presented in this paper.

Mahrous et al. [24] state that 3D data sets often do not
have critical points and detect a topological segmentation
by extracting connected components in which all streamlines
have the same destinations on the boundary. They make use
of a material interface algorithm to assign each vertex to a
component. Later [23] they improve their work including the
origin of the streamlines, critical points, cell locking, and smart
sampling.

Otto et al. [26] apply a similar method to uncertain 2D
vector fields, where they trace the origin and destination of
streamlines probabilistically.

Rössl and Theisel [32] segment the domain by applying
standard clustering to a Euclidean approximation of the Haus-
dorff metric between streamlines. They claim that the resulting
clusters coincide with the topological segmentation.

Analogously to Mahrous et al., Wang et al. [49] segment
connected regions based on the origin and destination of
streamlines. They encode origin and destination zones in
one number, which they assign to the cells traversed by the
streamlines. The separatrices are found using this scalar field.
In contrast to Mahrous et al., they do not consider critical
points as potential origins and destinations but only inflow
and outflow region on the domain boundary.

The Topology toolkit (TTK) [44] offers segmentation tech-
niques for scalar fields. The FTMTree filter assigns an index
to each point in the dataset that indicates its correspondence
to a branch in the contour tree. This simple assignment is
sufficient, because the critical points of a scalar field coincide
with its vertices. The analogous problem for vector fields is
very different. Not only are the critical points located inside
cells, but also do the separatrices follow arbitrary paths across
the domain. Therefore pixel-based techniques cannot solve this
problem.

Our contribution differs from works on topology preserving
simplification [22], [41], which end up with grids that are not
aligned with the separatrices.

III. ALGORITHM

In a nutshell, the full workflow consists of the following
steps:

1) Extraction of the separatrices
2) Closing gaps and removing intersections
3) Triangulation in agreement with the separatrices
4) Extracting and merging regions
5) Merge with the original grid

We will explain each step in detail in the following subsec-
tions.

A. Extraction of the Separatrices

We extract the critical points and the separatrices using
the vtkVectorFieldTopology filter [3]. The topological skeleton
of a d-dimensional vector field v : Rd → Rd consists of
its critical points (i.e., the positions that have zero velocity



(a) Seedpoints starting with offset. (b) Convergence to a critical
point.

(c) Exit through the boundary. (d) Convergence to a periodic or-
bit.

(e) Seedpoints starting with offset. (f) Convergence to a critical point. (g) Exit through the boundary. (h) Convergence to a periodic or-
bit.

Fig. 3: Closing gaps and removing intersections. Top: before, bottom: after.

v(x) = 0) and separatrices (i.e., the co-dimension one invari-
ant manifolds). The filter assumes linear interpolation within
triangular cells and solve the locations of the critical points
using that formula analytically. Then the critical points are
categorized based on the eigenvalues of the vector field gra-
dient ∇v : Rd → Rd×d as sources (repelling nodes and foci),
sinks (attracting nodes and foci), saddles, and centers, see
Fig. 1. The filter computes the separatrices starting or ending
at saddles through integration starting from seedpoints placed
a small offset away from them along the principal axes of their
Jacobian using a Runge-Kutta method in vtkStreamTracer.

B. Closing Gaps and Removing Intersections

The output of the vtkVectorFieldTopology filter is suitable
for visualizations, but not for an actual segmentation in its off
the shelf form. It needs to be adapted in three ways to induce
a consistent segmentation.

First, we have to combine the separatrices with the boundary
of the input dataset. Especially in unstructured data that
contains non-rectangular boundaries or holes, it is crucial for
the lines to be connected to closed loops using the actual
boundary. We extract it with the vtkFeatureEdges filter and
combine both using vtkAppendPolyData.

Second, we have to close gaps. The separatrices are seeded
with a small offset from the saddles. This gap right around the
saddles would result in a bleeding of separate regions into each
other. We close these gaps by explicitly adding a line between
the saddle and each seedpoint, Fig. 3(a),(e). Similarly, there

are gaps between the end of a separatrix and its destination.
If the separatrix converges to a critical point, the integration
will abort at some point because the velocity drops to zero and
the integration stagnates. We look for these types of ends of
separatrices and explicitly add a line between the closest point
of the trajectory to the nearest critical point while discarding
the following tail, Fig. 3(b),(f). Finally, if a separatrix exits
through the boundary, then the integration will stop right
before leaving a gap between the line and the boundary. We
explicitly add a line that continues the streamline with the
boundary, Fig. 3(c),(g).

Third, we have to make the separatrices produce a consistent
segmentation. The consistency is violated if separatrices inter-
sect themselves or each other. Even though this cannot occur
in theory, it very much does so in practice due to numerical
error in the Runga-Kutta integrator even when using higher
order methods with adaptive step size. Please note that this
step is significantly different from methods detecting closed
streamlines [21], [51]. While they focus on the detection of
periodic orbits as meaningful topological features, we are only
interested in removing artifacts that prevent an admissible
segmentation. We follow the streamlines from the beginning,
detect the first intersection using basic geometry, split the
two involved line segments into four line segments by adding
the intersection point and connecting it to all four involved
points and remove the two original, intersecting line segments.
Although this procedure does not resolve the theoretical in-



Fig. 4: Triangulation constrained by separatrices. Two addi-
tional points on the right have been added via regular sampling
of background space to improve numerical stability.

consistency of intersecting streamlines, it does allow for a
meaningful segmentation. We perform this step repeatedly un-
til no more intersections are found to make sure that the newly
inserted line segments are treated, too. For self-intersecting
streamlines, we do an extra step that consists in traveling along
the streamlines and removing the tail after the first return
to itself. As streamlines tend to produce self intersections
when they approach periodic orbits, this procedure results in
a significant speed-up of subsequent treatments and a clearer
visualization because every new revolution just produces more
clutter and increasingly more intersections with previous ones,
Fig. 3(d),(h).

C. Triangulation in Agreement with the Separatrices

Once the separatrices of the domain are formed, segmenting
the topological regions of flow is in principal complete since
each is bounded by curves that enclose a subregion of the
domain. However, there are several practical concerns that
require additional computational steps. For example, it is
difficult to render complex, typically concave regions using
standard graphics libraries and hardware. Instead, such regions
must be triangulated to produce a tessellation that can be easily
processed and visualized. Moreover, to avoid incompatible
meshes (i.e., those with cracks or topological gaps between
adjoining triangles), the tessellation must be performed to
ensure mesh compatibility across subregion boundaries.

To perform the triangulation using VTK, we use the vtkDe-
launay2D filter. Since the separating curves are represented
by polylines, the points and (optionally) edge segments are
used to construct a constrained Delaunay triangulation. The
constraints on the triangulation are the line segments that
compose the separatrix. To improve the overall shape of the
resulting triangles, additional points can be added as well,
Fig. 4. These additional points can be readily generated using
a tessellated plane or even random point generation. The

Fig. 5: Barrier edges can be used to separate regions. Here
regions A & B are separated by edge barriers. These barriers
may be based on explicit specification via separatrix edge
segments; or via edge length.

Delaunay triangulation is only well defined if all points are
mutually different. Therefore, merging near coincident points
is necessary to avoid numerical issues. The filter vtkClean-
PolyData works well for this.

D. Extracting and Merging Regions

Once each region is triangulated, the triangles within each
region are labeled and extracted. The filter vtkPolyDataEdge-
ConnectivityFilter (a new implementation to support this
work) is used to perform this task. The filter simply traverses
the mesh to identify and assign region labels to all edge-
neighboring triangles. The triangle tj is considered an edge
neighbor to triangle ti if ti and tj share a triangulation
edge, and the edge is not specified as a barrier edge, Fig. 5.
Barrier edges are defined by the line segments composing
the separatrices and separate one region from another. Note
that the traversal proceeds by propagating waves across edge-
connected regions, with one connectivity traversal per region
required to label all regions. Once the segmentation process
completes, the regions are sorted by their total area and
output in descending order. This facilitates further analysis
and visualization, see below.

In practice, numerical issues are not uncommon, thus addi-
tional steps are taken to ensure the stability of the algorithm
proposed here. This is typically due to the numerical sensitivity
of the Delaunay triangulation, but also because of large
differences in point spacing due to separatrix convergence
near critical points - the end result being the generation of
relatively small triangles. To address these numerical issues,
we extend the concept of topological barrier edges (i.e., line
segments defining the separatrix) and define length-based
barrier edges that are defined as triangle edges of a length
within a specified range of edge lengths. Using small-length
barrier edges has the effect of segmenting out many small (in
terms of area) regions, while enabling large regions to grow
in a relatively unconstrained fashion. To improve the final
result, we introduce a GrowSmallRegions() function which
combines many small, edge-neighboring regions into single,
larger regions. The final result is much improved, and prevents



unexpected connectivity traversal leakage from one separatrix
region into another.

E. Merge with the Original Grid

Finally, we combine the vertices of the original grid with
the new dataset. Each of the original vertices falls into one of
the segments and gets the corresponding ID assigned through
probing. The final dataset then contains all information of
the input and allows visualization and following data analysis
with full fidelity, e.g. streamlines or line integral convolution
(LIC) [5] as in Fig. 9.

IV. DERIVATION OF QUANTITATIVE INFORMATION

The segmentation allows for all sorts of quantitative mea-
sures that are useful to better characterize, understand, and
communicate the underlying dataset.

To start with, we count the number of regions in the
domain, which is a measure of the topological complexity of
the flow [43]. To provide additional insight, counting can
also be done distinguishing different types of regions such
as closed regions (e.g., eddies) and open regions (i.e., regions
where streamlines terminate on a domain boundary).

The region area is simply obtained by calculating and
summing the areas of all the cells belonging to a region.
Region area can be used for example to measure the regions
and rank them, thus forming a rationale for focusing further
description and analysis on the largest ones. It is also useful to
calculate the mean residence time in each region, as explained
below.

A fundamental property of the canonical regions is that
they admit global transversals (i.e., lines that intersect every
streamline of the region in exactly one point) [25]. This
property is crucial for calculating the flow rate across each
region by generating orthogonal transversals and integrating
the velocity along them. Transversals are streamlines of the
orthogonal flow field in 2D, visualized in Fig. 6 for the
groundwater and in Fig. 9(b) for the heat exchange simulation.
If the vector field is divergence free, the flow rate is the same
across all the transversals of a region, except for transversals
ending on a domain boundary, which could carry less flow.
If the vector field is not divergence free, the flow rate can
vary across the region. In both cases, we suggest to calculate
the flow rate across a large number of transversals, seeding
them along the separatrices (Fig. 6). Then, the maximum flow
rate can be taken as representative of the region. If the vector
field is divergence free, the mean residence time can also be
calculated by dividing the region area by the flow rate [9].
Otherwise, the variations of the flow rate across the region can
be analyzed.

Transversals can also be used to seed streamlines along
them for an effective visualization of the flow patterns. Indeed,
doing so for one transversal in each region will generate a
physically meaningful distribution of streamlines throughout
the domain, thereby providing a solution to the difficult
streamlines seeding problem [33]. To this end, in each region
we choose the transversal that is the longest among those that

Fig. 6: White: transversals seeded on separatrices, black: the
longest ones chosen for streamline seeding.

carry at least 99 % of the maximum flow rate (Fig. 6). It
would be possible to seed the streamlines evenly along the
transversals [21], [53], but the application scientists pointed
out that they prefer a more physically meaningful placement
in which the density represents the flow rate. Therefore along
the selected transversals, streamlines are seeded so as to keep
an equal flow rate between two consecutive streamlines. As a
result, dense streamlines reflect high flow velocity, in line with
the natural intuition from experiments. Furthermore, if many
streamlines are generated in this way, the full distribution of
residence times in each region can be calculated.

V. APPLICATIONS

In this section, we showcase the usability of the workflow in
two application cases of interest to the environmental scientific
community.

A. Groundwater Flow

Groundwater plays a critical role in the water cycle, and
it is an essential source of water for humans. It typically
recharges from rainfall and flows through several geological
layers before reappearing on the surface in the form of springs,
river baseflow, or wetlands. While flowing, groundwater car-
ries along chemical elements that can react with the rocks
through which it percolates. These reactions, which depend
on the types of rocks met along the flow path, affect water
chemistry and control various geological processes. Therefore,
numerous scientific and environmental problems require a
good understanding of groundwater flow paths and residence
times.

In a landmark study of regional-scale groundwater flow,
Tóth [45] recognized “a certain grouping of the flow lines”
in vertical 2D groundwater flow simulations. This observation
prompted them to define the concept of flow system, which is
essentially equivalent to the canonical regions defined herein.
This concept provides an effective framework to describe and
interpret groundwater flow and reactive transport at regional
scale [6], [46], [54], making it one of the most fundamental
concepts in modern hydrogeology [1], [2], [47]. However,
until now, no quantitative analysis has been presented of the
properties of these flow systems (i.e., volume, flow rate, etc.).



(a) Canonical regions colored by region id. (b) Canonical regions colored by area.

(c) Canonical regions colored by flow rate. (d) Canonical regions colored by mean residence time.

Fig. 7: Segmented groundwater flow field and quantitative information of each canonical region. Note: the mean residence
time was calculated assuming a uniform porosity of 1.

This knowledge gap is partly due to the lack of efficient
and accessible tools to segment a groundwater flow field into
its different flow systems (notwithstanding several research
efforts in this direction [48], [49]).

We reproduced one of the groundwater flow fields analyzed
in Tóth’s landmark study and segmented it into its canonical
regions (Fig. 7(a)). The result is a vivid display of the 11 flow
regions that make up this particular example, in agreement
with visual segmentations produced manually by previous
authors [16], [45]. Calculation of the regions areas reveals
that the shallower regions (i.e., those located closer to the top
boundary) are smaller than the deeper ones (Fig. 7(b)). The
flow rate generally follows an inverse logic (i.e., deeper regions
carry less flow), except for the smallest shallow regions, which
carry little flow due to their limited size (Fig. 7(c)). These
two variables combine into the mean residence time, which is
clearly larger in deeper regions (Fig. 7(d)).

Etienne Bresciani is a researcher in hydrogeology at the
Center for Advanced Studies in Arid Zones (CEAZA), Chile.
He comments: “Groundwater flow is a complex process, but it
is not chaotic (a priori). In this context, vector field topology is
extremely relevant for characterizing flow patterns and associ-
ated transport properties. The hydrogeological community has
long been waiting for a tool such as the one presented here.
It will allow for the quantitative study of groundwater flow
patterns, which, so far, have mostly been studied qualitatively”.

B. Heat Exchange

Cross-flow in tube bundles has been extensively studied
due to its frequent uses in many environmental applications.
A tube bundle is a well-packed collection of pipes that is
used as a radiation core in a heat exchanger device. Tube
bundles are an ideal cooling solution for a wide variety of
applications, such as offshore structures for the production and
transmission of electricity, oil, gas [39], and other resources
and cooling systems for nuclear plants [8]. Many experimental
and numerical studies have been carried out to understand the
physics of flow in arrays of cylinders. Here, we show the
results of a flow simulation through a tube bundle that idealizes
flow in the lower plenum. In this work, we are studying
the flow of water through a staggered tube bundle [31], [38]
by assigning proper boundary conditions to reproduce arrays
of cylinders. The computation was undertaken for only one
set of staggered tubes with periodic conditions modeling the
repetitive configuration along the stream-wise (x) and span-
wise (y) directions. A stream-wise periodic condition was
applied at the inlet and outlet boundaries. This simulated
constant mass flow was based on the average velocity of
water flow 106 cm/s. The stream-wise periodic boundary
condition is taken as fully developed flow, while the span-wise
periodic lateral boundary is assumed to be repetitive in the
y-direction. The Reynolds’s number is 18000, hence a Large
Eddy Simulation (LES) [11], [28] is applied in a finite element
method to capture the eddies shown in Fig. 8.



(a) Separatrices colored by integration time. Red: forward, blue:
backward. Background LIC of flow colored by velocity.

(b) LIC of orthogonal flow colored by region id of segmentation.

Fig. 8: Line integral convolution (LIC) [18] and topology of the heat exchange flow. Critical points colored by type. Red:
repelling, white: saddle, blue: attracting.

In order to guarantee an efficient heat transfer throughout
the domain, the engineers want to analyze the effect of eddies
on heat transfer as supposed to the laminar part of the fluid.
Our segmentation allows to easily distinguish regions where
water moves freely through the domain (efficient flow) from
regions where water is stuck in recirculating zones (dead flow),
Fig. 9(a),(b). Then one can compute the ratio between efficient
flow and dead flow in terms of numbers and volume, which
provides the application scientist with an immediate evaluation
of the quality of their setup in one number. We were able
to determine systematically which regions contain trapped
water by examining the maximum integration time of particles
seeded along the transversals. If it continues to grow with
the maximum permitted number of steps in the Runge-Kutta
integrator, then the water is trapped. We assign a “nan” value
to the respective regions, which can then be assigned a distinct
color (here white) when visualizing regions’ mean residence
time, Fig. 9(b). Adding up their area shows that they amount
to only 0.5% in the currently investigated configuration.

This application turned out to be challenging for several
reasons. First, the unstructured grid and especially the concave
shape of the domain required an additional cropping step be-
cause the Delaunay algorithm naturally returns a triangulation
of the domain’s convex hull. Second, the strong spiralling
behavior of the flow caused numerical instability during the
Delaunay triangulation. The barrier edge length parameter
allowed a successful segmentation despite this problem.

Jiajia Waters is an expert on fluid dynamics at Los Alamos

National Laboratory studying the cross-flow of different tube
bundle designs through numerical simulations. She collabo-
rates with us applying the workflow to an application relevant
to her research. She comments: “With this approach, we can
easily analyze the results of our simulations. This saves a lot
of time and is way more precise compared to the old analysis
method, where we had to visually estimate the boundaries of
the regions of different flow behaviors based on streamline
plots.”

VI. RUNTIMES

The computational requirement of the proposed segmenta-
tion algorithm can approximately be compared to the com-
putational requirement of existing topological segmentation
algorithms that involve computing forward and backward
streamlines from all the cells of the grid [24], [49]. The
comparison is not one to one because in contrast to the latter,
our algorithm generates segmentations with subpixel accuracy.
Since streamline computation is the most time-consuming part
of those methods, we compared the runtime of the proposed
segmentation algorithm with the runtime of computing forward
and backward streamlines from all the cells of the grid in
the groundwater flow example, which has 40,000 cells and
the heat exchange, which has only 4,000 cells (Table I).
Streamlines were computed with vtkStreamTracer, in which
the runtime largely depends on the chosen integration step.
Our segmentation algorithm also somewhat depends on the
streamline integration step that is used for computing the



(a) Canonical regions colored by area. (b) Residence time is an indicator of which regions are trapped.

Fig. 9: Quantitative analysis of the heat exchange simulation. The area of regions with a residence time of infinity (white),
adds up to only 0.5% of the overall area.

separatrices. For the same integration step of 0.1 (in cell size
unit), the computation time of our segmentation algorithm is
24 times smaller than that of computing forward and backward
streamlines from all the cells for the groundwater example.
For an integration step of 0.5, this number falls to 8, which
is still a significant difference. Even for the very small heat
exchange dataset, the proposed algorithm is significantly faster.
The computation time of our algorithm is mostly spent in step
E, i.e., for the merge with the underlying grid (Table II).

VII. CONCLUSIONS

We have presented a workflow (https://github.com/
etiennebresciani/flowtopolopy) to extract the topological
segmentation of 2D vector fields that is based on filters
all publicly available through the open source library
VTK. The overall workflow heavily relies on the three
filters: vtkVectorFieldTopology, vtkDelaunay2D, and
vtkPolyDataEdgeConnectivityFilter, which have been
extended in their functionality to support the segmentation of
complex, spiralling vector fields in a robust manner.

The resulting data level segmentation allows application
scientists to access their complex data piece by piece. Each
segment is a canonical region and can have only one out
of three simple shapes, namely strip, annular, or spiral [25],
[27]. Therefore even complex data can be treated as a com-
position of elementary building blocks. Each block comes
with a transversal that permits the extraction of quantitative
properties, like volume, flow rate, or residence time. That

allows analysis of the underlying physical phenomena that
goes far beyond the traditional visualization of the separatrices.

We have illustrated the use of the segmentation in two
application cases of importance to the environmental sciences:
groundwater flow and heat exchange. The results highlight
the potential of the proposed approach for improving the
understanding and/or engineering of various types of systems.

In future work, we plan on improving the numerical stability
of the Delaunay triangulation implementation so that the cur-
rently employed parameter steering the lengths of the barrier
edges can be omitted. That will improve the user-friendliness
of the workflow. We also plan to extend the segmentation
algorithm to three-dimensional vector fields.
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