60 research outputs found
Oystershell Scale: An Invasive Threat to Aspen Conservation
Aspen decline is an acute and chronic problem in Arizona, where high levels of overstory mortality and a lack of recruitment continue to be observed. Oystershell scale (Lepidosaphes ulmi; OSS), an invasive sapsucking insect, has recently become widespread in native aspen stands in the southwestern U.S., further contributing to aspen mortality. Damage is severe in lower elevation stands and within ungulate exclosures created to conserve aspen. Young recruiting aspen that are rare on the landscape incur high levels of OSS-caused mortality when infested (Fig. 1). OSS has only recently become a pest of concern in the Southwest and Intermountain West, and thus, mitigation strategies are lacking for OSS in natural forest settings. OSS is also polyphagous and affects several woody hosts with thin bark, adding to management complexity. Collaborative efforts have been initiated to address OSS biology, natural predators, and management strategies
Sustainability and Drivers of \u3ci\u3ePopulus tremuloides\u3c/i\u3e Regeneration and Recruitment Near the Southwestern Edge of its Range
Quaking aspen (Populus tremuloides Michx.) ecosystems are highly valued in the southwestern United States because of the ecological, economic, and aesthetic benefits they provide. Aspen has experienced extensive mortality in recent decades, and there is evidence that many areas in Arizona, United States lack adequate recruitment to replace dying overstory trees. Maintaining sustainable levels of regeneration and recruitment (i.e. juveniles) is critical for promoting aspen ecosystem resilience and adaptive capacity, but questions remain about which factors currently limit juvenile aspen and which strategies are appropriate for managing aspen in an increasingly uncertain future. To fill these critical knowledge gaps, we sampled aspen populations across Arizona and collected data representing a suite of biotic and abiotic factors that potentially influence juvenile aspen. Specifically, we addressed two questions: (i) Is aspen sustainably regenerating and recruiting in Arizona? and (2) Which biotic and abiotic factors significantly influence aspen regeneration and recruitment? We found that many aspen populations in Arizona lack sustainable levels of juvenile aspen, and the status of recruitment was especially dire, with 40% of study plots lacking a single recruiting stem. Aspen regeneration was less abundant on warmer sites than cooler ones, highlighting the threat that a rapidly warming climate poses to aspen sustainability. Aspen recruitment was significantly more abundant in areas with recent fire than in areas without fire, and recruitment had a strong positive relationship with fire severity. The most important limiting factors for aspen recruitment were ungulate browse, especially by introduced Rocky Mountain elk (Cervus canadensis nelsoni), and the invasive insect, oystershell scale (Lepidosaphes ulmi). We conclude with a discussion of how management can promote sustainability of aspen populations by addressing the array of threats that aspen faces, such as a warming climate, chronic ungulate browse, and outbreaks of oystershell scale
The 2010 very high energy gamma-ray flare & 10 years of multi-wavelength observations of M 87
Abridged: The giant radio galaxy M 87 with its proximity, famous jet, and
very massive black hole provides a unique opportunity to investigate the origin
of very high energy (VHE; E>100 GeV) gamma-ray emission generated in
relativistic outflows and the surroundings of super-massive black holes. M 87
has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray
emission displays strong variability on timescales as short as a day. In this
paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and
VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE
was detected triggering further observations at VHE (H.E.S.S.), X-rays
(Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE gamma-ray
light curve enables one to derive a precise temporal characterization of the
flare: the single, isolated flare is well described by a two-sided exponential
function with significantly different flux rise and decay times. While the
overall variability pattern of the 2010 flare appears somewhat different from
that of previous VHE flares in 2005 and 2008, they share very similar
timescales (~day), peak fluxes (Phi(>0.35 TeV) ~= (1-3) x 10^-11 ph cm^-2
s^-1), and VHE spectra. 43 GHz VLBA radio observations of the inner jet regions
indicate no enhanced flux in 2010 in contrast to observations in 2008, where an
increase of the radio flux of the innermost core regions coincided with a VHE
flare. On the other hand, Chandra X-ray observations taken ~3 days after the
peak of the VHE gamma-ray emission reveal an enhanced flux from the core. The
long-term (2001-2010) multi-wavelength light curve of M 87, spanning from radio
to VHE and including data from HST, LT, VLA and EVN, is used to further
investigate the origin of the VHE gamma-ray emission. No unique, common MWL
signature of the three VHE flares has been identified.Comment: 19 pages, 5 figures; Corresponding authors: M. Raue, L. Stawarz, D.
Mazin, P. Colin, C. M. Hui, M. Beilicke; Fig. 1 lightcurve data available
online: http://www.desy.de/~mraue/m87
Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
Abstract: In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M ⊙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87’s spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded
Oystershell Scale: An Emerging Invasive Threat to Aspen in the Southwestern US
Oystershell scale (OSS; Lepidosaphes ulmi) is an emerging invasive insect that poses a serious threat to conservation of quaking aspen (Populus tremuloides) in the southwestern US. Although OSS has been an urban pest in the US since the 1700s, it has recently spread into natural aspen stands in northern Arizona, where outbreaks are causing dieback and mortality. We quantified the ongoing outbreak of OSS at two scales: (1) local severity at two sites and (2) regional distribution across northern Arizona. Our regional survey indicated that OSS is widespread in lower elevation aspen stands and is particularly pervasive in ungulate exclosures. Advanced regeneration had the highest levels of infestation and mortality, which is concerning because this size class is an underrepresented component of aspen stands in northern Arizona. If OSS continues to spread and outbreaks result in dieback and mortality like we observed, then aspen in the southwestern US, and perhaps beyond, will be threatened. Three interacting factors contribute to OSS’s potential as a high-impact invasive insect that could spread rapidly: (1) its hypothesized role as a sleeper species, (2) potential interactions between OSS and climate change, and (3) the species’ polyphagous nature. Invasive pests like OSS pose an imminent threat to native tree species and, therefore, represent an immediate research and monitoring priority. We conclude with recommendations for future research and monitoring in order to understand OSS’s biology in natural aspen stands, quantify impacts, limit future spread, and mitigate mortality and loss of aspen and other host species
Genetic architecture of disease resistance and tolerance in Douglas-fir trees.
Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes
Astronomy & Astrophysics First detection of VHE γ-rays from SN 1006 by HESS
ABSTRACT Aims. Recent theoretical predictions of the lowest very high energy (VHE) luminosity of SN 1006 are only a factor 5 below the previously published HESS upper limit, thus motivating further in-depth observations of this source. Methods. Deep observations at VHE energies (above 100 GeV) were carried out with the high energy stereoscopic system (HESS) of Cherenkov Telescopes from 2003 to 2008. More than 100 h of data have been collected and subjected to an improved analysis procedure. Results. Observations resulted in the detection of VHE γ-rays from SN 1006. The measured γ-ray spectrum is compatible with a power-law, the flux is of the order of 1% of that detected from the Crab Nebula, and is thus consistent with the previously established HESS upper limit. The source exhibits a bipolar morphology, which is strongly correlated with non-thermal X-rays. Conclusions. Because the thickness of the VHE-shell is compatible with emission from a thin rim, particle acceleration in shock waves is likely to be the origin of the γ-ray signal. The measured flux level can be accounted for by inverse Compton emission, but a mixed scenario that includes leptonic and hadronic components and takes into account the ambient matter density inferred from observations also leads to a satisfactory description of the multi-wavelength spectrum
Raubenheimer 9 , M. Raue 1,30 , S. M. Rayner 8 , M. Renaud 12,1 , F. Rieger 1,30
ABSTRACT Aims. Our aim is to study the very high energy (VHE; E > 100 GeV) γ-ray emission from BL Lac objects and the evolution in time of their broad-band spectral energy distribution (SED). Methods. VHE observations of the high-frequency peaked BL Lac object PKS 2005−489 were made with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Three simultaneous multi-wavelength campaigns at lower energies were performed during the HESS data taking, consisting of several individual pointings with the XMM-Newton and RXTE satellites. Results. A strong VHE signal, ∼17σ total, from PKS 2005−489 was detected during the four years of HESS observations (90.3 h live time). The integral flux above the average analysis threshold of 400 GeV is ∼3% of the flux observed from the Crab Nebula and varies weakly on time scales from days to years. The average VHE spectrum measured from ∼300 GeV to ∼5 TeV is characterized by a power law with a photon index, Γ = 3.20 ± 0.16 stat ± 0.10 syst . At X-ray energies the flux is observed to vary by more than an order of magnitude between 2004 and 2005. Strong changes in the X-ray spectrum (ΔΓ X ≈ 0.7) are also observed, which appear to be mirrored in the VHE band. Conclusions. The SED of PKS 2005−489, constructed for the first time with contemporaneous data on both humps, shows significant evolution. The large flux variations in the X-ray band, coupled with weak or no variations in the VHE band and a similar spectral behavior, suggest the emergence of a new, separate, harder emission component in September 2005
- …