103 research outputs found

    FootSpring: A Compliance Model for the ATHLETE Family of Robots

    Get PDF
    This paper describes and evaluates one method of modeling compliance in a wheel-on-leg walking robot. This method assumes that all of the robot s compliance takes place at the ground contact points, specifically the tires and legs, and that the rest of the robot is rigid. Optimization is used to solve for the displacement of the feet and of the center of gravity. This method was tested on both robots of the ATHLETE family, which have different compliance. For both robots, the model predicts the sag of points on the robot chassis with an average error of about one percent of the height of the robot

    Astrobee Guest Science Guide

    Get PDF
    The Astrobee Research Facility will maintain three identical free-flying Astrobee robots on the ISS. After the Astrobees are launched and commissioned in 2018, they will replace the SPHERES robots that have been operating on the ISS since 2006 (Fig. 2). Over the years, the SPHERES have been among the most-used payloads on the ISS, supporting dozens of experiments from a variety of guest scientists. In the next section, we'll talk about past SPHERES experiments as possible inspiration for your future research on Astrobee. Compared to SPHERES, the Astrobee robots will offer many new capabilities and will require less astronaut time to support, so we hope the new facility will be able to fly experiments much more often

    Supporting student nurses in practice with additional online communication tools.

    Get PDF
    Student nurses' potential isolation and difficulties of learning on placement have been well documented and, despite attempts to make placement learning more effective, evidence indicates the continuing schism between formal learning at university and situated learning on placement. First year student nurses, entering placement for the first time, are particularly vulnerable to the vagaries of practice. During 2012 two first year student nurse seminar groups (52 students) were voluntarily recruited for a mixed method study to determine the usage of additional online communication support mechanisms (Facebook, wiki, an email group and traditional methods of support using individual email or phone) while undertaking their first five week clinical placement. The study explores the possibility of strengthening clinical learning and support by promoting the use of Web 2.0 support groups for student nurses. Results indicate a high level of interactivity in both peer and academic support in the use of Facebook and a high level of interactivity in one wiki group. Students' qualitative comments voice an appreciation of being able to access university and peer support whilst working individually on placement. Recommendations from the study challenge universities to use online communication tools already familiar to students to complement the support mechanisms that exist for practice learning. This is tempered by recognition of the responsibility of academics to ensure their students are aware of safe and effective online communication

    Robotic Follow-Up for Human Exploration

    Get PDF
    We are studying how "robotic follow-up" can improve future planetary exploration. Robotic follow-up, which we define as augmenting human field work with subsequent robot activity, is a field exploration technique designed to increase human productivity and science return. To better understand the benefits, requirements, limitations and risks associated with this technique, we are conducting analog field tests with human and robot teams at the Haughton Crater impact structure on Devon Island, Canada. In this paper, we discuss the motivation for robotic follow-up, describe the scientific context and system design for our work, and present results and lessons learned from field testing

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity

    Get PDF
    A. Palotie on työryhmän UK10K Consortium jäsen.Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as described previously. Nominally significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF similar to 0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 x 10(-3)), highlighting the challenges of testing rare variant associations and the need for very large sample sizes. Further validation in cohorts with severe obesity and engineering the variants in model organisms will be needed to explore whether human variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. Such studies may yield druggable targets for weight loss therapies.Peer reviewe

    Influence of deformation and fluids on Ar retention in white mica: Dating the Dover Fault, Newfoundland Appalachians

    Get PDF
    White mica 40Ar/39Ar analyses may provide useful constraints on the timing of tectonic processes, but complex geological and thermal histories can perturb Ar systematics in a variety of ways. Ductile shear zones represent excellent case studies for exploring the link(s) between dynamic re-/neo-crystallization of white mica and coeval enhanced fluid flow, and their effect on 40Ar/39Ar dates. White mica 40Ar/39Ar dates were collected from compositionally similar granites that record different episodes of deformation with proximity to the Dover Fault, a terrane-bounding strike-slip shear zone in the Appalachian orogen, Newfoundland, Canada. 40Ar/39Ar data were collected in situ by laser ablation and by step heating single crystals. Results were compared to each other and against complementary U-Pb zircon and monazite, and K-Ar fault gouge analysis. Although step-heat 40Ar/39Ar is a widely applied method in orogenic settings, this dataset shows that relatively flat step-heat 40Ar/39Ar spectra are in contradiction with wide spreads in in-situ 40Ar/39Ar dates from the same samples, and that plateau dates in some cases yielded mixed dates of equivocal geological significance. This result indicates that the step-wise release of Ar from white mica likely homogenizes and obscures spatially-controlled Ar isotope reservoirs in white mica from sheared rocks. In contrast, in situ laser ablation 40Ar/39Ar analysis preserves the spatial resolution of 40Ar reservoirs that have been variably reset by deformation and fluid interaction. This study therefore suggests that laser ablation is the best method for dating the timing of deformation recorded by white mica. Final interpretation of results should be guided by microstructural analysis, estimation of deformation temperature, chemical characterization of white mica, and complementary chronometers. Overall the dataset shows that granitic protoliths were emplaced between 430-422 Ma (U-Pb zircon). High strain deformation along the Wing Pond Shear Zone occurred between ca. 422-405 Ma (U-Pb monazite and 40Ar/39Ar). Subsequent patchy Ar loss in white mica occurred locally during low T shear (40Ar/39Ar). K-Ar dating of authigenic illite in fault gouge from the broadly co-linear brittle Hermitage Bay Fault indicates that slip along the terrane boundary persisted until at least the Mississippian
    corecore