9 research outputs found

    Terrestrial Very-Long-Baseline Atom Interferometry:Workshop Summary

    Get PDF
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Upgrades to a Rb-85 Atom Interferometer

    No full text
    The use of atom interferometry in high-precision measurements has led to an increased interest in their applications for fundamental physics research. The possible investigation of dark-sector physics research motivated the building of an atom interferometer at the University of Liverpool. The interferometer utilises a drop configuration and uses a two laser system for trapping and driving two-photon transitions. The system traps ∼ 108 Rb-85 atoms and cools them to ∼15 μK using Doppler and polarisation gradient cooling. The Raman beams are generated using an acousto-optical modulator, and coherent control of atomic states has been presented by the observation of Rabi oscillations. Interferometry has been demonstrated by producing Ramsay fringes. These successes laid the foundation for building an upgraded interferometer capable of Doppler-sensitive measurements. A new interferometer was designed that incorporated a new main chamber with 23 viewports, allowing for greater optical access and larger beams. The larger beams enable more atoms to be trapped. Increased Raman beam size creates a flatter, more uniform wave-front. The cooling and Raman beams have been separated with the implementation of a high-power laser, that doubles the frequency of 30 W of 1560 nm light to 8 W of 780 nm, ×16 the amount of power previously available. A new optical system capable of launching atoms has been designed and partially built and tested. This also improves state selection and reduces sources of leaking light. A new Raman beam system was designed and investigated. This makes use of an Electro- Optical-Modulator to detune from resonance and reduce the likelihood of dephasing via single-photon transitions. To accommodate this, the Raman beam power was also improved with the implementation of tapered amplifiers. This system was partially tested. The possibility of using a dipole trap for further cooling has also been investigated

    Terrestrial Very-Long-Baseline Atom Interferometry: Workshop Summary

    No full text
    Summary of the Terrestrial Very-Long-Baseline Atom Interferometry Workshop held at CERN: https://indico.cern.ch/event/1208783/This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Terrestrial Very-Long-Baseline Atom Interferometry Workshop (TVLBAI 2023)

    No full text
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Terrestrial Very-Long-Baseline Atom Interferometry: Workshop Summary

    No full text
    Summary of the Terrestrial Very-Long-Baseline Atom Interferometry Workshop held at CERN: https://indico.cern.ch/event/1208783/This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Terrestrial Very-Long-Baseline Atom Interferometry : Workshop Summary

    No full text
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Terrestrial very-long-baseline atom interferometry: Workshop summary

    Get PDF
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more kilometer--scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions.</jats:p

    Terrestrial Very-Long-Baseline Atom Interferometry: Workshop Summary

    No full text
    Summary of the Terrestrial Very-Long-Baseline Atom Interferometry Workshop held at CERN: https://indico.cern.ch/event/1208783/This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Reference Samples in Geology and Geochemistry

    No full text
    corecore