384 research outputs found

    Are Waterfowl Food Resources Limited during Spring Migration? A Bioenergetic Assessment of Playas in Nebraska’s Rainwater Basin

    Get PDF
    Accurate bioenergetic carrying capacity estimates of wetlands on public and private lands, as well as those managed for crop production are important for managing waterfowl populations and habitats. Given the importance of wetlands in the Rainwater Basin region of Nebraska for spring migrating waterfowl, we quantified and compared seed and aquatic invertebrate biomass and true metabolizable energy (TME) at three wetland types; public wetlands, wetlands enrolled in the Wetlands Reserve Program (WRP), and cropped wetlands. Median seed biomass estimates at public,WRP, and cropped wetlands were 593 kg/ha, 561 kg/ha, and 419 kg/ha respectively. Cumulative TME varied among wetland type, with greater TME at cropped wetlands (2431 kcal/kg) than public (1740 kcal/kg) and WRP wetlands (1781 kcal/kg). Seed biomass estimates from this study were statistically greater than those currently used for management planning in the RWB, however, TME estimates were statistically lower than estimates currently assumed for WRP and public wetlands. Our estimates for aquatic invertebrate biomass were approximately 40-fold less than seed biomass estimates. Based on spring ponding frequency at wetlands in Nebraska’s Rainwater Basin, and the caloric estimates derived for each wetland type, we concluded that the regions wetlands meet the energetic demand of spring migrating waterfowl during 10% of years

    MEMS 411: Just Putt It in Drive

    Get PDF
    The ASME Student Design Challenge 2023: mini golf challenge

    Role of Protected Block Curriculum in Surgical Education

    Get PDF
    A protected block curriculum for surgical resident training began at the Medical College of Wisconsin in 2005. The curriculum has evolved with time as educational emphasis has changed. However, the concept of having resident learners relieved of clinical duty to focus on learning has not changed. Separate protected block curriculums are held for PGY1 and PGY 2 during which residents have no clinical responsibilities. These periods are defined at the beginning of each academic year and are distributed to all faculties. The systematic design, implementation, and evaluation of the protected block curriculum (PBC) Model provides an educationally grounded model for training surgical residents consistent with accreditation council for graduate medical education (ACGME) competency mandates. Resident evaluations consistently support the use of our PBC as a method to attain and practice skill sets in a nonthreatening environment. Faculty benefits are able to evaluate residents’ knowledge, skills, and attitudes in a nonclinical setting and engage residents as individuals. The format extended into the PGY3–5 years of training as it evolved. Over more than a decade of using PBC, we have performed a number of analyses on the program and even determined a cost for the program. The program continues to be adjusted to new technology and curriculum initiatives

    Precise Infrared Radial Velocities from Keck/NIRSPEC and the Search for Young Planets

    Full text link
    We present a high-precision infrared radial velocity study of late-type stars using spectra obtained with NIRSPEC at the W. M. Keck Observatory. Radial velocity precisions of 50 m/s are achieved for old field mid-M dwarfs using telluric features for precise wavelength calibration. Using this technique, 20 young stars in the {\beta} Pic (age ~12 Myr) and TW Hya (age ~8 Myr) Associations were monitored over several years to search for low mass companions; we also included the chromospherically active field star GJ 873 (EV Lac) in this survey. Based on comparisons with previous optical observations of these young active stars, radial velocity measurements at infrared wavelengths mitigate the radial velocity noise caused by star spots by a factor of ~3. Nevertheless, star spot noise is still the dominant source of measurement error for young stars at 2.3 {\mu}m, and limits the precision to ~77 m/s for the slowest rotating stars (v sin i < 6 km/s), increasing to ~168 m/s for rapidly rotating stars (v sin i > 12 km/s). The observations reveal both GJ 3305 and TWA 23 to be single-lined spectroscopic binaries; in the case of GJ 3305, the motion is likely caused by its 0.09" companion, identified after this survey began. The large amplitude, short-timescale variations of TWA 13A are indicative of a hot Jupiter-like companion, but the available data are insufficient to confirm this. We label it as a candidate radial velocity variable. For the remainder of the sample, these observations exclude the presence of any 'hot' (P < 3 days) companions more massive than 8 MJup, and any 'warm' (P < 30 days) companions more massive than 17 MJup, on average. Assuming an edge-on orbit for the edge-on disk system AU Mic, these observations exclude the presence of any hot Jupiters more massive than 1.8 MJup or warm Jupiters more massive than 3.9 MJup.Comment: Accepted for publication in The Astrophysical Journal. 18 pages, 7 figure

    Photocatalytic hydroxylation of arylboronic acids using continuous flow reactors

    Get PDF
    The photocatalytic oxidation of mono- and di-substituted arylboronic acids to phenols has been investigated using a continuous flow photoreactor fitted with white LEDs. An EtOH–H2O solvent system accelerated conversion at 2 MPa; whereas reactions at atmospheric pressure allowed for moderately efficient desymmetrisation

    Hydrothermal circulation at the Cleft-Vance overlapping spreading center : results of a magnetometric resistivity survey

    Get PDF
    We report on a magnetometric resistivity sounding carried out in the overlapping spreading center between the Cleft and Vance segments of the Juan de Fuca Ridge. The data collected reveal a strong three dimensionality in the crustal electrical resistivity structure on wavelengths of a few kilometers. Areas of reduced crustal electrical resistivities, with values approaching that of seawater, are seen beneath the neovolcanic zones of both active spreading centers. We interpret these reduced resistivities as evidence of active hydrothermal circulation within the uppermost 1 km of hot, young oceanic crust

    The yeast high mobility group protein HMO2, a subunit of the chromatin-remodeling complex INO80, binds DNA ends

    Get PDF
    DNA damage is a common hazard that all cells have to combat. Saccharomyces cerevisiae HMO2 is a high mobility group protein (HMGB) that is a component of the chromatin-remodeling complex INO80, which is involved in double strand break (DSB) repair. We show here using DNA end-joining and exonuclease protection assays that HMO2 binds preferentially to DNA ends. While HMO2 binds DNA with both blunt and cohesive ends, the sequence of a single stranded overhang significantly affects binding, supporting the conclusion that HMO2 recognizes features at DNA ends. Analysis of the effect of duplex length on the ability of HMO2 to protect DNA from exonucleolytic cleavage suggests that more than one HMO2 must assemble at each DNA end. HMO2 binds supercoiled DNA with higher affinity than linear DNA and has a preference for DNA with lesions such as pairs of tandem mismatches; however, comparison of DNA constructs of increasing length suggests that HMO2 may not bind stably as a monomer to distorted DNA. The remarkable ability of HMO2 to protect DNA from exonucleolytic cleavage, combined with reports that HMO2 arrives early at DNA DSBs, suggests that HMO2 may play a role in DSB repair beyond INO80 recruitment

    Bacteriophages ϕMR299-2 and ϕNH-4 Can Eliminate Pseudomonas aeruginosa in the Murine Lung and on Cystic Fibrosis Lung Airway Cells

    Get PDF
    Pseudomonas aeruginosa is a common cause of infection in the lungs of patients with cystic fibrosis (CF). In addition, biofilm formation and antibiotic resistance of Pseudomonas are major problems that can complicate antibiotic therapy. We evaluated the efficacy of using bacteriophages to kill the pathogen in both biofilms and in the murine lung. We isolated and characterized two phages from a local wastewater treatment plant, a myovirus (ϕNH-4) and a podovirus (ϕMR299-2). Both phages were active against clinical isolates of P. aeruginosa. Together, the two phages killed all 9 clinical isolate strains tested, including both mucoid and nonmucoid strains. An equal mixture of the two phages was effective in killing P. aeruginosa NH57388A (mucoid) and P. aeruginosa MR299 (nonmucoid) strains when growing as a biofilm on a cystic fibrosis bronchial epithelial CFBE41o- cell line. Phage titers increased almost 100-fold over a 24-h period, confirming replication of the phage. Furthermore, the phage mix was also effective in killing the pathogen in murine lungs containing 1 × 107 to 2 × 107 P. aeruginosa. Pseudomonas was effectively cleared (reduced by a magnitude of at least 3 to 4 log units) from murine lungs in 6 h. Our study demonstrates the efficacy of these two phages in killing clinical Pseudomonas isolates in the murine lung or as a biofilm on a pulmonary cell line and supports the growing interest in using phage therapy for the control and treatment of multidrug-resistant Pseudomonas lung infections in CF patients
    corecore