131 research outputs found

    HF spectrum occupancy and antennas

    Get PDF
    This paper deals with the research made during the COST 296 action in the WG2, WP 2.3 in the antennas and HF spectrum management fields, focusing the Mitigation of Ionospheric Effects on Radio Systems as the subject of this COST action.info:eu-repo/semantics/publishedVersio

    19th UD National Print Invitational Show Card

    Get PDF
    Show card for the 19th National Print Invitational.https://digitalcommons.udallas.edu/nineteenth_print/1000/thumbnail.jp

    The Association of C-Reactive Protein and CRP Genotype with Coronary Heart Disease: Findings from Five Studies with 4,610 Cases amongst 18,637 Participants

    Get PDF
    Background: It is unclear whether C-reactive protein (CRP) is causally related to coronary heart disease (CHD). Genetic variants that are known to be associated with CRP levels can be used to provide causal inference of the effect of CRP on CHD. Our objective was to examine the association between CRP genetic variant +1444C>T (rs1130864) and CHD risk in the largest study to date of this association.Methods and Results: We estimated the association of CRP genetic variant +1444C>T (rs1130864) with CRP levels and with CHD in five studies and then pooled these analyses (N= 18,637 participants amongst whom there were 4,610 cases). CRP was associated with potential confounding factors (socioeconomic position, physical activity, smoking and body mass) whereas genotype (rs1130864) was not associated with these confounders. The pooled odds ratio of CHD per doubling of circulating CRP level after adjustment for age and sex was 1.13 (95% CI: 1.06, 1.21), and after further adjustment for confounding factors it was 1.07 (95% CI: 1.02, 1.13). Genotype (rs1130864) was associated with circulating CRP; the pooled ratio of geometric means of CRP level among individuals with the TT genotype compared to those with the CT/CC genotype was 1.21 (95% CI: 1.15, 1.28) and the pooled ratio of geometric means of CRP level per additional T allele was 1.14 (95% CI: 1.11, 1.18), with no strong evidence in either analyses of between study heterogeneity (I-2 = 0%, p>0.9 for both analyses). There was no association of genotype (rs1130864) with CHD: pooled odds ratio 1.01 (95% CI: 0.88, 1.16) comparing individuals with TT genotype to those with CT/CC genotype and 0.96 (95% CI: 0.90, 1.03) per additional T allele (I-2<7.5%, p. 0.6 for both meta-analyses). An instrumental variables analysis (in which the proportion of CRP levels explained by rs1130864 was related to CHD) suggested that circulating CRP was not associated with CHD: the odds ratio for a doubling of CRP level was 1.04 (95% CI: 0.61, 1.80).Conclusions: We found no association of a genetic variant, which is known to be related to CRP levels, (rs1130864) and having CHD. These findings do not support a causal association between circulating CRP and CHD risk, but very large, extended, genetic association studies would be required to rule this out

    Apoptotic Effects of Antilymphocyte Globulins on Human Pro-inflammatory CD4+CD28− T-cells

    Get PDF
    BACKGROUND: Pro-inflammatory, cytotoxic CD4(+)CD28(-) T-cells with known defects in apoptosis have been investigated as markers of premature immuno-senescence in various immune-mediated diseases. In this study we evaluated the influence of polyclonal antilymphocyte globulins (ATG-Fresenius, ATG-F) on CD4(+)CD28(-) T-cells in vivo and in vitro. PRINCIPAL FINDINGS: Surface and intracellular three colour fluorescence activated cell sorting analyses of peripheral blood mononuclear cells from 16 consecutive transplant recipients and short-term cell lines were performed. In vivo, peripheral levels of CD3(+)CD4(+)CD28(-) T-cells decreased from 3.7 ± 7.1% before to 0 ± 0% six hours after ATG-F application (P = 0.043) in 5 ATG-F treated but not in 11 control patients (2.9 ± 2.9% vs. 3.9 ± 3.0%). In vitro, ATG-F induced apoptosis even in CD4(+)CD28(-) T-cells, which was 4.3-times higher than in CD4(+)CD28(+) T-cells. ATG-F evoked apoptosis was partially reversed by the broad-spectrum caspase inhibitor benzyloxycarbonyl (Cbz)-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) and prednisolon-21-hydrogensuccinate. ATG-F triggered CD25 expression and production of pro-inflammatory cytokines, and induced down-regulation of the type 1 chemokine receptors CXCR-3, CCR-5, CX3CR-1 and the central memory adhesion molecule CD62L predominately in CD4(+)CD28(-) T-cells. CONCLUSION: In summary, in vivo depletion of peripheral CD3(+)CD4(+)CD28(-) T-cells by ATG-F in transplant recipients was paralleled in vitro by ATG-F induced apoptosis. CD25 expression and chemokine receptor down-regulation in CD4(+)CD28(-) T-cells only partly explain the underlying mechanism

    Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment

    Get PDF
    Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ~4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (re = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (re = 0.20-0.24). To explore the basis fo

    Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics

    Get PDF
    Funding Information: Researchers were funded by investment from the European Regional Development Fund (ERDF) and the European Social Fund (ESF) Convergence Programme for Cornwall and the Isles of Scilly [J.T.]; European Research Council (ERC) [grant: SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC to T.M.F., A.R.W.], [ERC Consolidator Grant, ERC-2014-CoG-648916 to V.W.V.J.], [P.R.N.]; University of Bergen, KG Jebsen and Helse Vest [P.R.N.]; Wellcome Trust Senior Investigator Awards [A.T.H. (WT098395), M.I.M. (WT098381)]; National Institute for Health Research (NIHR) Senior Investigator Award (NF-SI-0611–10219); Sir Henry Dale Fellowship (Wellcome Trust and Royal Society grant: WT104150) [R.M.F., R.N.B.]; 4-year studentship (Grant Code: WT083431MF) [R.C.R]; the European Research Council under the European Union’s Seventh Framework Programme (FP/2007– 2013)/ERC Grant Agreement (grant number 669545; Develop Obese) [D.A.L.]; US National Institute of Health (grant: R01 DK10324) [D.A.L, C.L.R]; Wellcome Trust GWAS grant (WT088806) [D.A.L] and NIHR Senior Investigator Award (NF-SI-0611–10196) [D.A.L]; Wellcome Trust Institutional Strategic Support Award (WT097835MF) [M.A.T.]; The Diabetes Research and Wellness Foundation Non-Clinical Fellowship [J.T.]; Australian National Health and Medical Research Council Early Career Fellowship (APP1104818) [N.M.W.]; Daniel B. Burke Endowed Chair for Diabetes Research [S.F.A.G.]; UK Medical Research Council Unit grants MC_UU_12013_5 [R.C.R, L.P, S.R, C.L.R, D.M.E., D.A.L.] and MC_UU_12013_4 [D.M.E.]; Medical Research Council (grant: MR/M005070/1) [M.N.W., S.E.J.]; Australian Research Council Future Fellowship (FT130101709) [D.M.E] and (FT110100548) [S.E.M.]; NIHR Oxford Biomedical Research Centre (BRC); Oak Foundation Fellowship and Novo Nordisk Foundation (12955) [B.F.]; FRQS research scholar and Clinical Scientist Award by the Canadian Diabetes Association and the Maud Menten Award from the Institute of Genetics– Canadian Institute of Health Research (CIHR) [MFH]; CIHR— Frederick Banting and Charles Best Canada Graduate Scholarships [C.A.]; FRQS [L.B.]; Netherlands Organization for Health Research and Development (ZonMw–VIDI 016.136.361) [V.W.V.J.]; National Institute on Aging (R01AG29451) [J.M.M.]; 2010–2011 PRIN funds of the University of Ferrara—Holder: Prof. Guido Barbujani, Supervisor: Prof. Chiara Scapoli—and in part sponsored by the European Foundation for the Study of Diabetes (EFSD) Albert Renold Travel Fellowships for Young Scientists, ‘5 per mille’ contribution assigned to the University of Ferrara, income tax return year 2009 and the ENGAGE Exchange and Mobility Program for ENGAGE training funds, ENGAGE project, grant agreement HEALTH-F4–2007-201413 [L.M.]; ESRC (RES-060–23-0011) [C.L.R.]; National Institute of Health Research ([S.D., M.I.M.], Senior Investigator Award (NF-SI-0611–10196) [D.A.L]); Australian NHMRC Fellowships Scheme (619667) [G.W.M]. For study-specific funding, please see Supplementary Material. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Funding to pay the Open Access publication charges for this article was provided by the Charity Open Access Fund (COAF). Funding Information: We are extremely grateful to the participants and families who contributed to all of the studies and the teams of investigators involved in each one. These include interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. This research has been conducted using the UK Biobank Resource (Application numbers 7036 and 12703). For additional study-specific acknowledgements, please see Supplementary Material. Conflict of Interest statement. D.A.L. has received support from Roche Diagnostics and Medtronic for biomarker research unrelated to the work presented here. Funding Researchers were funded by investment from the European Regional Development Fund (ERDF) and the European Social Fund (ESF) Convergence Programme for Cornwall and the Isles of Scilly [J.T.]; European Research Council (ERC) [grant: SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC to T.M.F., A.R.W.], [ERC Consolidator Grant, ERC-2014-CoG-648916 to V.W.V.J.], [P.R.N.]; University of Bergen, KG Jebsen and Helse Vest [P.R.N.]; Wellcome Trust Senior Investigator Awards [A.T.H. (WT098395), M.I.M. (WT098381)]; National Institute for Health Research (NIHR) Senior Investigator Award (NF-SI-0611-10219); Sir Henry Dale Fellowship (Wellcome Trust and Royal Society grant: WT104150) [R.M.F., R.N.B.]; 4-year studentship (Grant Code: WT083431MF) [R.C.R]; the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement (grant number 669545; Develop Obese) [D.A.L.]; US National Institute of Health (grant: R01 DK10324) [D.A.L, C.L.R]; Wellcome Trust GWAS grant (WT088806) [D.A.L] and NIHR Senior Investigator Award (NF-SI-0611-10196) [D.A.L]; Wellcome Trust Institutional Strategic Support Award (WT097835MF) [M.A.T.]; The Diabetes Research and Wellness Foundation Non-Clinical Fellowship [J.T.]; Australian National Health and Medical Research Council Early Career Fellowship (APP1104818) [N.M.W.]; Daniel B. Burke Endowed Chair for Diabetes Research [S.F.A.G.]; UK Medical Research Council Unit grants MC_UU_12013_5 [R.C.R, L.P, S.R, C.L.R, D.M.E., D.A.L.] and MC_UU_12013_4 [D.M.E.]; Medical Research Council (grant: MR/M005070/1) [M.N.W., S.E.J.]; Australian Research Council Future Fellowship (FT130101709) [D.M.E] and (FT110100548) [S.E.M.]; NIHR Oxford Biomedical Research Centre (BRC); Oak Foundation Fellowship and Novo Nordisk Foundation (12955) [B.F.]; FRQS research scholar and Clinical Scientist Award by the Canadian Diabetes Association and the Maud Menten Award from the Institute of Genetics-Canadian Institute of Health Research (CIHR) [MFH]; CIHR-Frederick Banting and Charles Best Canada Graduate Scholarships [C.A.]; FRQS [L.B.]; Netherlands Organization for Health Research and Development (ZonMw-VIDI 016.136.361) [V.W.V.J.]; National Institute on Aging (R01AG29451) [J.M.M.]; 2010-2011 PRIN funds of the University of Ferrara-Holder: Prof. Guido Barbujani, Supervisor: Prof. Chiara Scapoli-and in part sponsored by the European Foundation for the Study of Diabetes (EFSD) Albert Renold Travel Fellowships for Young Scientists, '5 per mille' contribution assigned to the University of Ferrara, income tax return year 2009 and the ENGAGE Exchange and Mobility Program for ENGAGE training funds, ENGAGE project, grant agreement HEALTH-F4-2007-201413 [L.M.]; ESRC (RES-060-23-0011) [C.L.R.]; National Institute of Health Research ([S.D., M.I.M.], Senior Investigator Award (NFSI-0611-10196) [D.A.L]); Australian NHMRC Fellowships Scheme (619667) [G.W.M]. For study-specific funding, please see Supplementary Material. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Funding to pay the Open Access publication charges for this article was provided by the Charity Open Access Fund (COAF). Publisher Copyright: © The Author(s) 2018.Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P<5 x 10(-8). In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.Peer reviewe

    Genome-wide meta-analysis of common variant differences between men and women

    Get PDF
    The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 × 10−8) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ∼115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased trait
    corecore