384 research outputs found

    Chinese Expert Consensus on Critical Care Ultrasound Applications at COVID-19 Pandemic

    Get PDF
    The spread of new coronavirus (SARS-Cov-2) follows a different pattern than previous respiratory viruses, posing a serious public health risk worldwide. World Health Organization (WHO) named the disease as COVID-19 and declared it a pandemic. COVID-19 is characterized by highly contagious nature, rapid transmission, swift clinical course, profound worldwide impact, and high mortality among critically ill patients. Chest X-ray, computerized tomography (CT), and ultrasound are commonly used imaging modalities. Among them, ultrasound, due to its portability and non-invasiveness, can be easily moved to the bedside for examination at any time. In addition, with use of 4G or 5G networks, remote ultrasound consultation can also be performed, which allows ultrasound to be used in isolated medial areas. Besides, the contact surface of ultrasound probe with patients is small and easy to be disinfected. Therefore, ultrasound has gotten lots of positive feedbacks from the frontline healthcare workers, and it has played an indispensable role in the course of COVID-19 diagnosis and follow up

    Characterization of ultra-deeply buried middle Triassic Leikoupo marine carbonate petroleum system (!) in the Western Sichuan depression, China

    Get PDF
    Ultra-deeply buried (>5000 m) marine carbonate reservoirs have gradually become important exploration targets. This research focuses on providing an understanding of the basic elements of the ultra-deeply buried Middle Triassic Leikoupo marine carbonate petroleum system within the Western Sichuan Depression, China. Comprehensive analyses of organic geochemistry, natural gas, and C–H–He–Ne–Ar isotope compositions suggest that the reservoir is charged with compound gases from four source rock units including the Permian Longtan, Middle Triassic Leikoupo, Late Triassic Maantang and Xiaotangzi formations. Approximately a 50-m thick outcrop and 100-m length of drilling cores were examined in detail, and 108 samples were collected from six different exploration wells in order to conduct petrographic and petrophysical analyses. Thin-section and scanning electron microscope (SEM) observations, helium porosity and permeability measurements, mercury injection capillary pressure (MICP) analysis, and wire-line logging (5,500–6,900 m) indicate that the reservoir lithologies include argillaceous algal limestones, dolograinstones, crystalline dolostones, and microbially-derived stromatolitic and thrombolitic dolostones. Reservoir properties exhibit extreme heterogeneity due to different paleogeographic environmental controls and mutual interactions between constructive (e.g., epigenetic paleo-karstification, burial dissolution, structural movement, pressure-solution and dolomitization) and destructive (e.g., physical/chemical compaction, cementation, infilling, recrystallization, and replacement) diagenetic processes. An unconformity-related epigenetic karstification zone was identified in the uppermost fourth member of the Leikoupo Formation, which has developed secondary solution-enhanced pores, vugs, and holes that resulted in higher porosity (1.8–14.2%) and permeability (0.2–7.7 mD). The homogeneity and tightness of the reservoir increases with depth below the unconformity, and it is characterized by primary intergranular and intracrystalline pores, solution pores, fractures, stylolites, and micropores with a lower helium porosity (0.6–4.1%) and permeability (0.003–125.2 mD). Regional seals consist of the Late Triassic Xujiahe Formation, comprised of ~300 m of mudstones that are overlain by ~5,000-m thick of Jurassic to Quaternary continental argillaceous overburden rocks. Effective traps are dominated by a combination of structural-stratigraphic types. Paleo- reservoir crude oil cracking, wet-gases, and dry-gases from three successive hydrocarbon generation processes supplied the sufficient hydrocarbon resources. The homogenization temperatures of the hydrocarbon-associated aqueous fluid inclusions range from 98–130 °C and 130–171 °C, which suggests hydrocarbon charging occurred between 220–170 Ma and 130–90 Ma, respectively. One-dimensional basin evolution models combined with structural geologic and seismic profiles across wells PZ1-XQS1-CK1-XCS1-TS1 show that hydrocarbon migration and entrapment mainly occurred via the unconformity and interconnected fault-fracture networks with migration and charging driven by formation overpressure, abnormal fluid flow pressure, and buoyancy forces during the Indosinian and Yanshanian orogenies, with experiencing additional transformation occurring during the Himalayan orogeny. The predicted estimated reserves reached ~300 × 109 m3. The results provide excellent scientific implications for similar sedimentary basin studies, it is believed that abundant analogous deeply buried marine carbonate hydrocarbon resources yet to be discovered in China and elsewhere worldwide in the near future

    Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility

    Get PDF
    Porous metal scaffolds play an important role in the orthopedic field, due to their wide applications in prostheses implantation. Some previous studies showed that the scaffolds with trabecular bone structure reconstructed via computed tomography had satisfactory biocompatibility. However, the reverse modeling scaffolds were inflexible for customized design. Therefore, a top-down designing biomimetic bone scaffold with favorable mechanical performances and cytocompatibility is urgently demanded for orthopedic implants. An emerging additive manufacturing technique, selective laser melting, was employed to fabricate the trabecular-like porous Ti-6Al-4 V scaffolds with varying irregularities (0.05-0.5) and porosities (48.83%-74.28%) designed through a novel Voronoi-Tessellation based method. Micro-computed tomography and scanning electron microscopy were used to characterize the scaffolds’ morphology. Quasi-static compression tests were performed to evaluate the scaffolds’ mechanical properties. The MG63 cells culture in vitro experiments, including adhesion, proliferation, and differentiation, were conducted to study the cytocompatibility of scaffolds. Compressive tests of scaffolds revealed an apparent elastic modulus range of 1.93-5.24 GPa and an ultimate strength ranging within 44.9-237.5 MPa, which were influenced by irregularity and porosity, and improved by heat treatment. Furthermore, the in vitro assay suggested that the original surface of the SLM-fabricated scaffolds was favorable for osteoblasts adhesion and migration because of micro scale pores and ravines. The trabecular-like porous scaffolds with full irregularity and higher porosity exhibited enhanced cells proliferation and osteoblast differentiation at earlier time, due to their preferable combination of small and large pores with various shapes. This study suggested that selective laser melting-derived Ti-6Al-4 V scaffold with the trabecular-like porous structure designed through Voronoi-Tessellation method, favorable mechanical performance, and good cytocompatibility was a potential biomaterial for orthopedic implants

    2D Black Phosphorus: from Preparation to Applications for Electrochemical Energy Storage

    Get PDF
    Black phosphorus (BP) is rediscovered as a 2D layered material. Since its first isolation in 2014, 2D BP has triggered tremendous interest in the fields of condensed matter physics, chemistry, and materials science. Given its unique puckered monolayer geometry, 2D BP displays many unprecedented properties and is being explored for use in numerous applications. The flexibility, large surface area, and good electric conductivity of 2D BP make it a promising electrode material for electrochemical energy storage devices (EESDs). Here, the experimental and theoretical progress of 2D BP is presented on the basis of its preparation methods. The structural and physiochemical properties, air instability, passivation, and EESD applications of 2D BP are discussed systemically. Specifically, the latest research findings on utilizing 2D BP in EESDs, such as lithium‐ion batteries, supercapacitors, and emerging technologies (lithium–sulfur batteries, magnesium‐ion batteries, and sodium‐ion batteries), are summarized. On the basis of the current progress, a few personal perspectives on the existing challenges and future research directions in this developing field are provided

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore