86 research outputs found

    Enhancing Disaster Resilience by Reducing Stress-Associated Health Impacts

    Get PDF
    Disasters are a recurring fact of life, and major incidents can have both immediate and long-lasting negative effects on the health and well-being of people, communities, and economies. A primary goal of many disaster preparedness, response, and recovery plans is to reduce the likelihood and severity of disaster impacts through increased resilience of individuals and communities. Unfortunately, most plans do not address directly major drivers of long-term disaster impacts on humans—that is, acute, chronic, and cumulative stress—and therefore do less to enhance resilience than they could. Stress has been shown to lead to or exacerbate ailments ranging from mental illness, domestic violence, substance abuse, post-traumatic stress disorders, and suicide to cardiovascular disease, respiratory problems, and other infirmities. Individuals, groups, communities, organizations, and social ties are all vulnerable to stress. Based on a targeted review of what we considered to be key literature about disasters, resilience, and disaster-associated stress effects, we recommend eight actions to improve resiliency through inclusion of stress alleviation in disaster planning: (1) Improve existing disaster behavioral and physical health programs to better address, leverage, and coordinate resources for stress reduction, relief, and treatment in disaster planning and response. (2) Emphasize pre- and post-disaster collection of relevant biomarker and other health-related data to provide a baseline of health status against which disaster impacts could be assessed, and continued monitoring of these indicators to evaluate recovery. (3) Enhance capacity of science and public health early-responders. (4) Use natural infrastructure to minimize disaster damage. (5) Expand the geography of disaster response and relief to better incorporate the displacement of affected people. (6) Utilize nature-based treatment to alleviate pre- and post-disaster stress effects on health. (7) Review disaster laws, policies, and regulations to identify opportunities to strengthen public health preparedness and responses including for stress-related impacts, better engage affected communities, and enhance provision of health services. (8) With community participation, develop and institute equitable processes pre-disaster for dealing with damage assessments, litigation, payments, and housing

    Re-examining advice to complete antibiotic courses: a qualitative study with clinicians and patients

    Get PDF
    BACKGROUND: Antibiotic treatment duration may be longer than sometimes needed. Stopping antibiotics early, rather than completing pre-set antibiotic courses, may help reduce unnecessary exposure to antibiotics and antimicrobial resistance (AMR). AIM: To identify clinicians' and patients' views on stopping antibiotics when better (SAWB) for urinary tract infections (UTIs), and to explore comparisons with other acute infections. DESIGN & SETTING: An exploratory qualitative study with general practice clinicians and patients in England. METHOD: Primary care clinicians and patients who had recent UTI experience were recruited in England. Remote one-to-one interviews with clinicians and patients, and one focus group with patients, were conducted. Data were audiorecorded, transcribed, and analysed thematically. RESULTS: Eleven clinicians (seven GPs) and 19 patients (14 with experience of recurrent and/or chronic UTIs) were included. All participants considered SAWB unfamiliar and contradictory to well-known advice to complete antibiotic courses, but were interested in the evidence for risks and benefits of SAWB. Clinicians were amenable if evidence and guidelines supported it, whereas patients were more averse because of concerns about the risk of UTI recurrence and/or complications and AMR. Participants viewed SAWB as potentially more appropriate for longer antibiotic courses and other infections (with longer courses and lower risk of recurrence and/or complications). Participants stressed the need for unambiguous advice and SAWB as part of shared decision making and personalised advice. CONCLUSION: Patients were less accepting of SAWB, whereas clinicians were more amenable to it. Patients and clinicians require good evidence that this novel approach to self-determining antibiotic duration is safe and beneficial. If evidence based, SAWB should be offered with an explanation of why the advice differs from the ‘complete the course’ instruction, and a clear indication of when exactly to stop antibiotics should be given

    Framework for a Community Health Observing System for the Gulf of Mexico Region: Preparing for Future Disasters

    Get PDF
    © Copyright © 2020 Sandifer, Knapp, Lichtveld, Manley, Abramson, Caffey, Cochran, Collier, Ebi, Engel, Farrington, Finucane, Hale, Halpern, Harville, Hart, Hswen, Kirkpatrick, McEwen, Morris, Orbach, Palinkas, Partyka, Porter, Prather, Rowles, Scott, Seeman, Solo-Gabriele, Svendsen, Tincher, Trtanj, Walker, Yehuda, Yip, Yoskowitz and Singer. The Gulf of Mexico (GoM) region is prone to disasters, including recurrent oil spills, hurricanes, floods, industrial accidents, harmful algal blooms, and the current COVID-19 pandemic. The GoM and other regions of the U.S. lack sufficient baseline health information to identify, attribute, mitigate, and facilitate prevention of major health effects of disasters. Developing capacity to assess adverse human health consequences of future disasters requires establishment of a comprehensive, sustained community health observing system, similar to the extensive and well-established environmental observing systems. We propose a system that combines six levels of health data domains, beginning with three existing, national surveys and studies plus three new nested, longitudinal cohort studies. The latter are the unique and most important parts of the system and are focused on the coastal regions of the five GoM States. A statistically representative sample of participants is proposed for the new cohort studies, stratified to ensure proportional inclusion of urban and rural populations and with additional recruitment as necessary to enroll participants from particularly vulnerable or under-represented groups. Secondary data sources such as syndromic surveillance systems, electronic health records, national community surveys, environmental exposure databases, social media, and remote sensing will inform and augment the collection of primary data. Primary data sources will include participant-provided information via questionnaires, clinical measures of mental and physical health, acquisition of biological specimens, and wearable health monitoring devices. A suite of biomarkers may be derived from biological specimens for use in health assessments, including calculation of allostatic load, a measure of cumulative stress. The framework also addresses data management and sharing, participant retention, and system governance. The observing system is designed to continue indefinitely to ensure that essential pre-, during-, and post-disaster health data are collected and maintained. It could also provide a model/vehicle for effective health observation related to infectious disease pandemics such as COVID-19. To our knowledge, there is no comprehensive, disaster-focused health observing system such as the one proposed here currently in existence or planned elsewhere. Significant strengths of the GoM Community Health Observing System (CHOS) are its longitudinal cohorts and ability to adapt rapidly as needs arise and new technologies develop

    Framework for a Community Health Observing System for the Gulf of Mexico Region: Preparing for Future Disasters

    Get PDF
    © Copyright © 2020 Sandifer, Knapp, Lichtveld, Manley, Abramson, Caffey, Cochran, Collier, Ebi, Engel, Farrington, Finucane, Hale, Halpern, Harville, Hart, Hswen, Kirkpatrick, McEwen, Morris, Orbach, Palinkas, Partyka, Porter, Prather, Rowles, Scott, Seeman, Solo-Gabriele, Svendsen, Tincher, Trtanj, Walker, Yehuda, Yip, Yoskowitz and Singer. The Gulf of Mexico (GoM) region is prone to disasters, including recurrent oil spills, hurricanes, floods, industrial accidents, harmful algal blooms, and the current COVID-19 pandemic. The GoM and other regions of the U.S. lack sufficient baseline health information to identify, attribute, mitigate, and facilitate prevention of major health effects of disasters. Developing capacity to assess adverse human health consequences of future disasters requires establishment of a comprehensive, sustained community health observing system, similar to the extensive and well-established environmental observing systems. We propose a system that combines six levels of health data domains, beginning with three existing, national surveys and studies plus three new nested, longitudinal cohort studies. The latter are the unique and most important parts of the system and are focused on the coastal regions of the five GoM States. A statistically representative sample of participants is proposed for the new cohort studies, stratified to ensure proportional inclusion of urban and rural populations and with additional recruitment as necessary to enroll participants from particularly vulnerable or under-represented groups. Secondary data sources such as syndromic surveillance systems, electronic health records, national community surveys, environmental exposure databases, social media, and remote sensing will inform and augment the collection of primary data. Primary data sources will include participant-provided information via questionnaires, clinical measures of mental and physical health, acquisition of biological specimens, and wearable health monitoring devices. A suite of biomarkers may be derived from biological specimens for use in health assessments, including calculation of allostatic load, a measure of cumulative stress. The framework also addresses data management and sharing, participant retention, and system governance. The observing system is designed to continue indefinitely to ensure that essential pre-, during-, and post-disaster health data are collected and maintained. It could also provide a model/vehicle for effective health observation related to infectious disease pandemics such as COVID-19. To our knowledge, there is no comprehensive, disaster-focused health observing system such as the one proposed here currently in existence or planned elsewhere. Significant strengths of the GoM Community Health Observing System (CHOS) are its longitudinal cohorts and ability to adapt rapidly as needs arise and new technologies develop

    Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

    Get PDF
    Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.Peer reviewe

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
    corecore