625 research outputs found

    Molecular Phylogenetic Analysis of the Stegana ornatipes Species Group (Diptera: Drosophilidae) in China, with Description of a New Species

    Get PDF
    A new species of the Stegana (Steganina) ornatipes species group (Diptera: Drosophilidae) is described from Hainan, China, S. (S.) xipengi sp. nov. Based on the mitochondrial ND2 and COI gene sequences, the relationships among eight species from mainland China of the ornatipes group, and their relationships to the undulata, nigrolimbata and shirozui species groups of the same subgenus, are investigated, using two species of the subgenus Stegana, S. emeiensis and S. quadrata, as outgroups. The result shows that S. (S.) mengla is debarred from the ornatipes group

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Sequence Variants of the Phytophthora sojae RXLR Effector Avr3a/5 Are Differentially Recognized by Rps3a and Rps5 in Soybean

    Get PDF
    The perception of Phytophthora sojae avirulence (Avr) gene products by corresponding soybean resistance (Rps) gene products causes effector triggered immunity. Past studies have shown that the Avr3a and Avr5 genes of P. sojae are genetically linked, and the Avr3a gene encoding a secreted RXLR effector protein was recently identified. We now provide evidence that Avr3a and Avr5 are allelic. Genetic mapping data from F2 progeny indicates that Avr3a and Avr5 co-segregate, and haplotype analysis of P. sojae strain collections reveal sequence and transcriptional polymorphisms that are consistent with a single genetic locus encoding Avr3a/5. Transformation of P. sojae and transient expression in soybean were performed to test how Avr3a/5 alleles interact with soybean Rps3a and Rps5. Over-expression of Avr3a/5 in a P. sojae strain that is normally virulent on Rps3a and Rps5 results in avirulence to Rps3a and Rps5; whereas silencing of Avr3a/5 causes gain of virulence in a P. sojae strain that is normally avirulent on Rps3a and Rps5 soybean lines. Transient expression and co-bombardment with a reporter gene confirms that Avr3a/5 triggers cell death in Rps5 soybean leaves in an appropriate allele-specific manner. Sequence analysis of the Avr3a/5 gene identifies crucial residues in the effector domain that distinguish recognition by Rps3a and Rps5

    Degradation of Potassium Rock by Earthworms and Responses of Bacterial Communities in Its Gut and Surrounding Substrates after Being Fed with Mineral

    Get PDF
    BACKGROUND: Earthworms are an ecosystem's engineers, contributing to a wide range of nutrient cycling and geochemical processes in the ecosystem. Their activities can increase rates of silicate mineral weathering. Their intestinal microbes usually are thought to be one of the key drivers of mineral degradation mediated by earthworms,but the diversities of the intestinal microorganisms which were relevant with mineral weathering are unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we show earthworms' effect on silicate mineral weathering and the responses of bacterial communities in their gut and surrounding substrates after being fed with potassium-bearing rock powder (PBRP). Determination of water-soluble and HNO(3)-extractable elements indicated some elements such as Al, Fe and Ca were significantly released from mineral upon the digestion of earthworms. The microbial communities in earthworms' gut and the surrounding substrates were investigated by amplified ribosomal DNA restriction analysis (ARDRA) and the results showed a higher bacterial diversity in the guts of the earthworms fed with PBRP and the PBRP after being fed to earthworms. UPGMA dendrogram with unweighted UniFrac analysis, considering only taxa that are present, revealed that earthworms' gut and their surrounding substrate shared similar microbiota. UPGMA dendrogram with weighted UniFrac, considering the relative abundance of microbial lineages, showed the two samples from surrounding substrate and the two samples from earthworms' gut had similarity in microbial community, respectively. CONCLUSIONS/SIGNIFICANCE: Our results indicated earthworms can accelerate degradation of silicate mineral. Earthworms play an important role in ecosystem processe since they not only have some positive effects on soil structure, but also promote nutrient cycling of ecosystem by enhancing the weathering of minerals

    Copy Number Variation in CNP267 Region May Be Associated with Hip Bone Size

    Get PDF
    Osteoporotic hip fracture (HF) is a serious global public health problem associated with high morbidity and mortality. Hip bone size (BS) has been identified as one of key measurable risk factors for HF, independent of bone mineral density (BMD). Hip BS is highly genetically determined, but genetic factors underlying BS variation are still poorly defined. Here, we performed an initial genome-wide copy number variation (CNV) association analysis for hip BS in 1,627 Chinese Han subjects using Affymetrix GeneChip Human Mapping SNP 6.0 Array and a follow-up replicate study in 2,286 unrelated US Caucasians sample. We found that a copy number polymorphism (CNP267) located at chromosome 2q12.2 was significantly associated with hip BS in both initial Chinese and replicate Caucasian samples with p values of 4.73E-03 and 5.66E-03, respectively. An important candidate gene, four and a half LIM domains 2 (FHL2), was detected at the downstream of CNP267, which plays important roles in bone metabolism by binding to several bone formation regulator, such as insulin-like growth factor-binding protein 5 (IGFBP-5) and androgen receptor (AR). Our findings suggest that CNP267 region may be associated with hip BS which might influence the FHL2 gene downstream

    Identifying water stress-response mechanisms in citrus by in silico transcriptome analysis

    Full text link

    Identification and Characterization of NF-Y Transcription Factor Families in the Monocot Model Plant Brachypodium distachyon

    Get PDF
    BACKGROUND: Nuclear Factor Y (NF-Y) is a heterotrimeric transcription factor composed of NF-YA, NF-YB and NF-YC proteins. Using the dicot plant model system Arabidopsis thaliana (Arabidopsis), NF-Y were previously shown to control a variety of agronomically important traits, including drought tolerance, flowering time, and seed development. The aim of the current research was to identify and characterize NF-Y families in the emerging monocot model plant Brachypodium distachyon (Brachypodium) with the long term goal of assisting in the translation of known dicot NF-Y functions to the grasses. METHODOLOGY/PRINCIPAL FINDINGS: We identified, annotated, and further characterized 7 NF-YA, 17 NF-YB, and 12 NF-YC proteins in Brachypodium (BdNF-Y). By examining phylogenetic relationships, orthology predictions, and tissue-specific expression patterns for all 36 BdNF-Y, we proposed numerous examples of likely functional conservation between dicots and monocots. To test one of these orthology predictions, we demonstrated that a BdNF-YB with predicted orthology to Arabidopsis floral-promoting NF-Y proteins can rescue a late flowering Arabidopsis mutant. CONCLUSIONS/SIGNIFICANCE: The Brachypodium genome encodes a similar complement of NF-Y to other sequenced angiosperms. Information regarding NF-Y phylogenetic relationships, predicted orthologies, and expression patterns can facilitate their study in the grasses. The current data serves as an entry point for translating many NF-Y functions from dicots to the genetically tractable monocot model system Brachypodium. In turn, studies of NF-Y function in Brachypodium promise to be more readily translatable to the agriculturally important grasses
    corecore