25 research outputs found

    Two-phase microalgae cultivation for RAS water remediation and high-value biomass production

    Get PDF
    The overall goal of this study was to provide solutions to innovative microalgae-based technology for wastewater remediation in a cold-water recirculating marine aquaculture system (RAS). This is based on the novel concept of integrated aquaculture systems in which fish nutrient-rich rearing water will be used for microalgae cultivation. The produced biomass can be used as fish feed, while the cleaned water can be reused, to create a highly eco-sustainable circular economy. Here, we tested three microalgae species Nannochloropis granulata (Ng), Phaeodactylum tricornutum (Pt), and Chlorella sp (Csp) for their ability to remove nitrogen and phosphate from the RAS wastewater and simultaneously produce high-value biomass, i.e., containing amino acids (AA), carotenoids, and polyunsaturated fatty acids (PUFAs). A high yield and value of biomass were achieved for all species in a two-phase cultivation strategy: i) a first phase using a medium optimized for best growth (f/2 14x, control); ii) a second "stress" phase using the RAS wastewater to enhance the production of high-value metabolites. Ng and Pt performed best in terms of biomass yield (i.e., 5-6 g of dry weight, DW.L-1) and efficient cleaning of the RAS wastewater from nitrite, nitrate, and phosphate (i.e., 100% removal). Csp produced about 3 g L-1 of DW and reduced efficiently only nitrate, and phosphate (i.e., about 76% and 100% removal, respectively). The biomass of all strains was rich in protein (30-40 % of DW) containing all the essential AA except Methionine. The biomass of all three species was also rich in PUFAs. Finally, all tested species are excellent sources of antioxidant carotenoids, including fucoxanthin (Pt), lutein (Ng and Csp) and & beta;-carotene (Csp). All tested species in our novel two-phase cultivation strategy thus showed great potential to treat marine RAS wastewater and provide sustainable alternatives to animal and plant proteins with extra added values

    A systems-wide understanding of photosynthetic acclimation in algae and higher plants

    Get PDF
    The ability of phototrophs to colonise different environments relied on the robust protection against oxidative stress in phototrophs, a critical requirement for the successful evolutionary transition from water to land. Photosynthetic organisms have developed numerous strategies to adapt their photosynthetic apparatus to changing light conditions in order to optimise their photosynthetic yield, crucial for life to exist on Earth. Photosynthetic acclimation is an excellent example of the complexity of biological systems, in which highly diverse processes, ranging from electron excitation over protein protonation to enzymatic processes coupling ion gradients with biosynthetic activity interact on drastically different timescales, ranging from picoseconds to hours. An efficient functioning of the photosynthetic apparatus and its protection is paramount for efficient downstream processes including metabolism and growth. Modern experimental techniques can be successfully integrated with theoretical and mathematical models to promote our understanding of underlying mechanisms and principles. This Review aims to provide a retrospective analysis of multidisciplinary photosynthetic acclimation research carried out by members of the Marie Curie Initial Training Project “AccliPhot”, placing the results in a wider context. The Review also highlights the applicability of photosynthetic organisms for industry, particularly with regards to the cultivation of microalgae. It aims to demonstrate how theoretical concepts can successfully complement experimental studies broadening our knowledge of common principles in acclimation processes in photosynthetic organisms, as well as in the field of applied microalgal biotechnology

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Identification of the mechanism of mixotrophy in Phaeodactylum tricornutum

    No full text
    Les diatomées jouent un rôle primordial dans l'écologie de la planète, car elles sont responsables du 20-40% de la productivite mondial d’oxygène. Elles figurent parmi les organismes à fort potentiel biotechnologique pour des applications biocarburant. Les diatomées sont des organismes symbiotiques issus de la fusion d'un ancêtre hétérotrophe avec une ou plusieurs micro-algues photosynthétiques. Grace à cette histoire évolutive complexe, les diatomées ont un métabolisme très flexible. Comme la plus part des microalgues elles peuvent utiliser la photosynthèse pour leur croissance, mais aussi la mixotrophie, i.e. la capacité de croître en présence de lumière et d’une source de carbone réduit. L'utilisation simultanée de la photosynthèse et de la respiration peut augmenter la productivité de la biomasse des microalgues et réduire ainsi le coût de leur exploitation industrielle. Dans cette thèse j’ai étudié le mécanisme et les conséquences du métabolisme mixotrophique chez la diatomée modèle Phaeodactylum tricornutum. J’ai contribué à étudier le mécanisme moléculaire à la base des interactions énérgétiques entre chloroplaste et mitochondrie. Dans ce travail, nous avons démontré que le NADPH généré dans le chloroplaste est exporté vers la mitochondrie pour générer de l’ATP requis pour la fixation du CO2 dans le chloroplaste. Cette interaction entre les deux organites cellulaires augmente la croissance de diatomées, et suggère que l'utilisation simultanée d’une source de carbone et de l'énergie lumineuse (mixotrophie) devrait augmenter la productivité de la biomasse chez les diatomées. Cette hypothèse a été testée dans la deuxième partie de ma thèse, où j’ai etudié les conséquences de la mixotrophie sur le métabolisme de Phaeodactylum. Grace à une approche métabolomique, transcriptomique, lipidomiques et de physiologie j’ai contribué à éclaircir les principales voies métaboliques (métabolisme centrale, métabolisme des lipides, métabolisme des polymères de réserve) concerné la mixotrophie. Dans la dernière partie de ce travail j’ai optimisé les conditions de culture et la composition du milieu afin d’améliorer la productivité en croissance mixotrophe chez Phaeodactylum. Ce résultat a été validé dans des photobioréacteurs à l'échelle labo pour tester le potentiel de l'exploitation industrielle de cet organisme.Diatoms are photosynthetic organisms with a strong influence on the global biogeochemistry. Moreover, they are extremely interesting as potential feedstocks for the production of high-value molecules and biofuel. They are endosymbiotic organisms originated by the fusion of a heterotrophic ancestor with one or more photosynthetic microalgae. This has led to an extremely flexible cell metabolism. Like other microalgae, diatoms are able to grow in the presence of both light and of a reduced carbon source. The simultaneous use of photosynthesis and respiration can increase biomass productivity and reduce the energy cost of the industrial exploitation of diatoms.In this project, the mechanism and the consequences of mixotrophic metabolism have been studied in the model diatom Phaeodactylum tricornutum. In the first part, I have studied the molecular mechanism governing the interactions between chloroplast and mitochondrion. We have demonstrated that the NADPH generated in the plastid is exported to the mitochondrion to generate additional ATP, which, once back to the plastid, is used for carbon fixation. Overall, this work shows that the interaction between these two organelles increases carbon fixation and growth in diatoms. We hence suggest that the simultaneous use of carbon and light energy sources (i.e. mixotrophy) should enhance biomass productivity in diatoms. This hypothesis has been tested in the second part of my thesis, where I focused on the consequences of mixotrophy on metabolism. By combining metabolomic, transcriptomic, lipidomic and physiology approaches, I have contributed to elucidate the main pathways targeted by mixotrophy (central carbon, lipid and storage carbon metabolism). In the last part of this work, I have worked on improving the culture conditions and medium composition to boost microalgal productivity by mixotrophy. These conditions have been scaled-up in lab scale photobioreactors, revealing the industrial exploitation potential of Phaeodactylum

    Identification du mécanisme de la mixotrophie chez Phaeodactylum tricornutum

    No full text
    Diatoms are photosynthetic organisms with a strong influence on the global biogeochemistry. Moreover, they are extremely interesting as potential feedstocks for the production of high-value molecules and biofuel. They are endosymbiotic organisms originated by the fusion of a heterotrophic ancestor with one or more photosynthetic microalgae. This has led to an extremely flexible cell metabolism. Like other microalgae, diatoms are able to grow in the presence of both light and of a reduced carbon source. The simultaneous use of photosynthesis and respiration can increase biomass productivity and reduce the energy cost of the industrial exploitation of diatoms.In this project, the mechanism and the consequences of mixotrophic metabolism have been studied in the model diatom Phaeodactylum tricornutum. In the first part, I have studied the molecular mechanism governing the interactions between chloroplast and mitochondrion. We have demonstrated that the NADPH generated in the plastid is exported to the mitochondrion to generate additional ATP, which, once back to the plastid, is used for carbon fixation. Overall, this work shows that the interaction between these two organelles increases carbon fixation and growth in diatoms. We hence suggest that the simultaneous use of carbon and light energy sources (i.e. mixotrophy) should enhance biomass productivity in diatoms. This hypothesis has been tested in the second part of my thesis, where I focused on the consequences of mixotrophy on metabolism. By combining metabolomic, transcriptomic, lipidomic and physiology approaches, I have contributed to elucidate the main pathways targeted by mixotrophy (central carbon, lipid and storage carbon metabolism). In the last part of this work, I have worked on improving the culture conditions and medium composition to boost microalgal productivity by mixotrophy. These conditions have been scaled-up in lab scale photobioreactors, revealing the industrial exploitation potential of Phaeodactylum.Les diatomées jouent un rôle primordial dans l'écologie de la planète, car elles sont responsables du 20-40% de la productivite mondial d’oxygène. Elles figurent parmi les organismes à fort potentiel biotechnologique pour des applications biocarburant. Les diatomées sont des organismes symbiotiques issus de la fusion d'un ancêtre hétérotrophe avec une ou plusieurs micro-algues photosynthétiques. Grace à cette histoire évolutive complexe, les diatomées ont un métabolisme très flexible. Comme la plus part des microalgues elles peuvent utiliser la photosynthèse pour leur croissance, mais aussi la mixotrophie, i.e. la capacité de croître en présence de lumière et d’une source de carbone réduit. L'utilisation simultanée de la photosynthèse et de la respiration peut augmenter la productivité de la biomasse des microalgues et réduire ainsi le coût de leur exploitation industrielle. Dans cette thèse j’ai étudié le mécanisme et les conséquences du métabolisme mixotrophique chez la diatomée modèle Phaeodactylum tricornutum. J’ai contribué à étudier le mécanisme moléculaire à la base des interactions énérgétiques entre chloroplaste et mitochondrie. Dans ce travail, nous avons démontré que le NADPH généré dans le chloroplaste est exporté vers la mitochondrie pour générer de l’ATP requis pour la fixation du CO2 dans le chloroplaste. Cette interaction entre les deux organites cellulaires augmente la croissance de diatomées, et suggère que l'utilisation simultanée d’une source de carbone et de l'énergie lumineuse (mixotrophie) devrait augmenter la productivité de la biomasse chez les diatomées. Cette hypothèse a été testée dans la deuxième partie de ma thèse, où j’ai etudié les conséquences de la mixotrophie sur le métabolisme de Phaeodactylum. Grace à une approche métabolomique, transcriptomique, lipidomiques et de physiologie j’ai contribué à éclaircir les principales voies métaboliques (métabolisme centrale, métabolisme des lipides, métabolisme des polymères de réserve) concerné la mixotrophie. Dans la dernière partie de ce travail j’ai optimisé les conditions de culture et la composition du milieu afin d’améliorer la productivité en croissance mixotrophe chez Phaeodactylum. Ce résultat a été validé dans des photobioréacteurs à l'échelle labo pour tester le potentiel de l'exploitation industrielle de cet organisme

    Identification du mécanisme de la mixotrophie chez Phaeodactylum tricornutum

    No full text
    Diatoms are photosynthetic organisms with a strong influence on the global biogeochemistry. Moreover, they are extremely interesting as potential feedstocks for the production of high-value molecules and biofuel. They are endosymbiotic organisms originated by the fusion of a heterotrophic ancestor with one or more photosynthetic microalgae. This has led to an extremely flexible cell metabolism. Like other microalgae, diatoms are able to grow in the presence of both light and of a reduced carbon source. The simultaneous use of photosynthesis and respiration can increase biomass productivity and reduce the energy cost of the industrial exploitation of diatoms.In this project, the mechanism and the consequences of mixotrophic metabolism have been studied in the model diatom Phaeodactylum tricornutum. In the first part, I have studied the molecular mechanism governing the interactions between chloroplast and mitochondrion. We have demonstrated that the NADPH generated in the plastid is exported to the mitochondrion to generate additional ATP, which, once back to the plastid, is used for carbon fixation. Overall, this work shows that the interaction between these two organelles increases carbon fixation and growth in diatoms. We hence suggest that the simultaneous use of carbon and light energy sources (i.e. mixotrophy) should enhance biomass productivity in diatoms. This hypothesis has been tested in the second part of my thesis, where I focused on the consequences of mixotrophy on metabolism. By combining metabolomic, transcriptomic, lipidomic and physiology approaches, I have contributed to elucidate the main pathways targeted by mixotrophy (central carbon, lipid and storage carbon metabolism). In the last part of this work, I have worked on improving the culture conditions and medium composition to boost microalgal productivity by mixotrophy. These conditions have been scaled-up in lab scale photobioreactors, revealing the industrial exploitation potential of Phaeodactylum.Les diatomées jouent un rôle primordial dans l'écologie de la planète, car elles sont responsables du 20-40% de la productivite mondial d’oxygène. Elles figurent parmi les organismes à fort potentiel biotechnologique pour des applications biocarburant. Les diatomées sont des organismes symbiotiques issus de la fusion d'un ancêtre hétérotrophe avec une ou plusieurs micro-algues photosynthétiques. Grace à cette histoire évolutive complexe, les diatomées ont un métabolisme très flexible. Comme la plus part des microalgues elles peuvent utiliser la photosynthèse pour leur croissance, mais aussi la mixotrophie, i.e. la capacité de croître en présence de lumière et d’une source de carbone réduit. L'utilisation simultanée de la photosynthèse et de la respiration peut augmenter la productivité de la biomasse des microalgues et réduire ainsi le coût de leur exploitation industrielle. Dans cette thèse j’ai étudié le mécanisme et les conséquences du métabolisme mixotrophique chez la diatomée modèle Phaeodactylum tricornutum. J’ai contribué à étudier le mécanisme moléculaire à la base des interactions énérgétiques entre chloroplaste et mitochondrie. Dans ce travail, nous avons démontré que le NADPH généré dans le chloroplaste est exporté vers la mitochondrie pour générer de l’ATP requis pour la fixation du CO2 dans le chloroplaste. Cette interaction entre les deux organites cellulaires augmente la croissance de diatomées, et suggère que l'utilisation simultanée d’une source de carbone et de l'énergie lumineuse (mixotrophie) devrait augmenter la productivité de la biomasse chez les diatomées. Cette hypothèse a été testée dans la deuxième partie de ma thèse, où j’ai etudié les conséquences de la mixotrophie sur le métabolisme de Phaeodactylum. Grace à une approche métabolomique, transcriptomique, lipidomiques et de physiologie j’ai contribué à éclaircir les principales voies métaboliques (métabolisme centrale, métabolisme des lipides, métabolisme des polymères de réserve) concerné la mixotrophie. Dans la dernière partie de ce travail j’ai optimisé les conditions de culture et la composition du milieu afin d’améliorer la productivité en croissance mixotrophe chez Phaeodactylum. Ce résultat a été validé dans des photobioréacteurs à l'échelle labo pour tester le potentiel de l'exploitation industrielle de cet organisme

    Production and characterization of biosurfactant synthesized by novel strain Rhodococcus sp. SP1d and it's potential for environmental applications

    No full text
    Background: Biosurfactants are biocompatible surface-active compounds with environmental and industrial applications. Besides, biosurfactants are not cost-competitive to their chemical counterparts. Cost effective technology such as the use of low-cost substrates is a promising approach to reduce the production cost. Objective: Production of biosurfactants by the novel strain Rhodococcus sp. SP1d was monitored by using different low-cost substrates. Moreover, their possible exploitation in the bioremediation field or as biocontrol agent was evaluated. Methods: 16S rDNA gene analysis was performed. Growth curves using n-hexadecane, diesel, exhausted oil, motor oil and butter was carried out. Biosurfactant production and activity was tested by oil-displacement assay and emulsification activity. The biofilm production was evaluated by MBEC Assay® Kit. Chemical structure of biosurfactants was investigated by Nuclear Magnetic Resonance spectroscopy. Results: Rhodococcus sp. SP1d evidence the ability to grow and biosynthesize surfactants using exhausted vegetable oil, mineral oil, butter, n-hexadecane, and diesel. The maximum production of crude biosurfactants was reached after 168 h of on n-hexadecane and diesel with a final yield of approximately 2.48 and 1.75 g L-1 respectively. SP1d produced biosurfactants on diesel when grown at 10 and 18°C maintaining the activity over a wide range of NaCl concentration, pH, and temperatures. The emulsification activity of the crude biosurfactant at 1000 mg/l was 55% towards xylene and olive oil. Nuclear Magnetic Resonance spectroscopy indicated that the biosurfactant is formed by trehalolipid. Biosurfactants extracted from Sp1d enhanced the biofilm production of fungal-antagonistic P. protegens MP12. Conclusion: The use of low-cost substrates reduces the cost of biosurfactant synthesis, and the environmental pollution due to their inappropriate disposal. The high production at different temperature, stability and emulsification properties using diesel as substrate, make it a sustainable biocompound for bioremediation purpose. Eventually, this biosurfactant improve the adherence to plant surfaces enhancing the antifungal activity of MP12

    Characterization of trehalolipid biosurfactant produced by the novel marine strain Rhodococcus sp. SP1d and its potential for environmental applications

    No full text
    BackgroundBiosurfactants are surface-active compounds with environmental and industrial applications. These molecules show higher biocompatibility, stability and efficiency compared to synthetic surfactants. On the other hand, biosurfactants are not cost-competitive to their chemical counterparts. Cost effective technology such as the use of low-cost substrates is a promising approach aimed at reducing the production cost. This study aimed to evaluate the biosurfactant production and activity by the novel strain Rhodococcus sp. SP1d by using different growth substrates. Therefore, to exploit the biosurfactant synthesized by SP1d for environmental applications, the effect of this compound on the bacteria biofilm formation was evaluated. Eventually, for a possible bioremediation application, the biosurfactant properties and its chemical characteristics were investigated using diesel as source of carbon.ResultsRhodococcus sp. SP1d evidence the highest similarity to Rhodococcus globerulus DSM 43954(T) and the ability to biosynthesize surfactants using a wide range of substrates such as exhausted vegetable oil, mineral oil, butter, n-hexadecane, and diesel. The maximum production of crude biosurfactant after 10 days of incubation was reached on n-hexadecane and diesel with a final yield of 2.38 & PLUSMN; 0.51 and 1.86 & PLUSMN; 0.31 g L- 1 respectively. Biosurfactants produced by SP1d enhanced the biofilm production of P. protegens MP12. Moreover, the results showed the ability of SP1d to produce biosurfactants on diesel even when grown at 10 and 18 & DEG;C. The biosurfactant activity was maintained over a wide range of NaCl concentration, pH, and temperature. A concentration of 1000 mg L- 1 of the crude biosurfactant showed an emulsification activity of 55% towards both xylene and olive oil and a reduction of 25.0 mN m(- 1) of surface tension of water. Eventually, nuclear magnetic resonance spectroscopy indicated that the biosurfactant is formed by trehalolipids.ConclusionsThe use of low-cost substrates such as exhausted oils and waste butter reduce both the costs of biosurfactant synthesis and the environmental pollution due to the inappropriate disposal of these residues. High production yields, stability and emulsification properties using diesel and n-hexadecane as substrates, make the biosurfactant produced by SP1d a sustainable biocompound for bioremediation purpose. Eventually, the purified biosurfactant improved the biofilm formation of the fungal antagonistic strain P. protegens MP12, and thus seem to be exploitable to increase the adherence and colonization of plant surfaces by this antagonistic strain and possibly enhance antifungal activity

    Boosting Biomass Quantity and Quality by Improved Mixotrophic Culture of the Diatom Phaeodactylum tricornutum

    No full text
    International audienceDiatoms are photoautotrophic unicellular algae and are among the most abundant, adaptable, and diverse marine phytoplankton. They are extremely interesting not only for their ecological role but also as potential feedstocks for sustainable biofuels and high-value commodities such as omega fatty acids, because of their capacity to accumulate lipids. However, the cultivation of microalgae on an industrial scale requires higher cell densities and lipid accumulation than those found in nature to make the process economically viable. One of the known ways to induce lipid accumulation in Phaeodactylum tricornutum is nitrogen deprivation, which comes at the expense of growth inhibition and lower cell density. Thus, alternative ways need to be explored to enhance the lipid production as well as biomass density to make them sustainable at industrial scale. In this study, we have used experimental and metabolic modeling approaches to optimize the media composition, in terms of elemental composition, organic and inorganic carbon sources, and light intensity, that boost both biomass quality and quantity of P. tricornutum . Eventually, the optimized conditions were scaled-up to 2 L photobioreactors, where a better system control (temperature, pH, light, aeration/mixing) allowed a further improvement of the biomass capacity of P. tricornutum to 12 g/L

    Ions channels/transporters and chloroplast regulation.

    No full text
    International audienceIons play fundamental roles in all living cells and their gradients are often essential to fuel transports, to regulate enzyme activities and to transduce energy within and between cells. Their homeostasis is therefore an essential component of the cell metabolism. Ions must be imported from the extracellular matrix to their final subcellular compartments. Among them, the chloroplast is a particularly interesting example because there, ions not only modulate enzyme activities, but also mediate ATP synthesis and actively participate in the building of the photosynthetic structures by promoting membrane-membrane interaction. In this review, we first provide a comprehensive view of the different machineries involved in ion trafficking and homeostasis in the chloroplast, and then discuss peculiar functions exerted by ions in the frame of photochemical conversion of absorbed light energy
    corecore