419 research outputs found

    Grape ASR-Silencing Sways Nuclear Proteome, Histone Marks and Interplay of Intrinsically Disordered Proteins

    Full text link
    In order to unravel the functions of ASR (Abscisic acid, Stress, Ripening-induced) proteins in the nucleus, we created a new model of genetically transformed grape embryogenic cells by RNAi-knockdown of grape ASR (VvMSA). Nuclear proteomes of wild-type and VvMSA-RNAi grape cell lines were analyzed by quantitative isobaric tagging (iTRAQ 8-plex). The most significantly up- or down-regulated nuclear proteins were involved in epigenetic regulation, DNA replication/repair, transcription, mRNA splicing/stability/editing, rRNA processing/biogenesis, metabolism, cell division/differentiation and stress responses. The spectacular up-regulation in VvMSA-silenced cells was that of the stress response protein VvLEA D-29 (Late Embryogenesis Abundant). Both VvMSA and VvLEA D-29 genes displayed strong and contrasted responsiveness to auxin depletion, repression of VvMSA and induction of VvLEA D-29. In silico analysis of VvMSA and VvLEA D-29 proteins highlighted their intrinsically disordered nature and possible compensatory relationship. Semi-quantitative evaluation by medium-throughput immunoblotting of eighteen post-translational modifications of histones H3 and H4 in VvMSA-knockdown cells showed significant enrichment/depletion of the histone marks H3K4me1, H3K4me3, H3K9me1, H3K9me2, H3K36me2, H3K36me3 and H4K16ac. We demonstrate that grape ASR repression differentially affects members of complex nucleoprotein structures and may not only act as molecular chaperone/transcription factor, but also participates in plant responses to developmental and environmental cues through epigenetic mechanisms

    Broadening the message : a nanovaccine co-loaded with messenger RNA and α-GalCer induces antitumor immunity through conventional and natural killer T cells

    Get PDF
    Messenger RNA encoding tumor antigens has the potential to evoke effective antitumor immunity. This study reports on a nanoparticle platform, named mRNA Galsomes, that successfully co-delivers nucleoside-modified antigen-encoding mRNA and the glycolipid antigen and immunopotentiator α-galactosylceramide (α-GC) to antigen-presenting cells after intravenous administration. By co-formulating low doses of α-GC, mRNA Galsomes induce a pluripotent innate and adaptive tumor-specific immune response in mice, with invariant natural killer T cells (iNKT) as a driving force. In comparison, mRNA Galsomes exhibit advantages over the state-of-the-art cancer vaccines using unmodified ovalbumin (OVA)-encoding mRNA, as we observed up to seven times more tumor-infiltrating antigen-specific cytotoxic T cells, combined with a strong iNKT cell and NK cell activation. In addition, the presence of suppressive myeloid cells (myeloid-derived suppressor cells and tumor-associated macrophages) in the tumor microenvironment was significantly lowered. Owing to these antitumor effects, OVA mRNA Galsomes significantly reduced tumor growth in established E.G7-OVA lymphoma, with a complete tumor rejection in 40% of the animals. Moreover, therapeutic vaccination with mRNA Galsomes enhanced the responsiveness to treatment with a PD-L1 checkpoint inhibitor in B16-OVA melanoma, as evidenced by a synergistic reduction of tumor outgrowth and a significantly prolonged median survival. Taken together, these data show that intravenously administered mRNA Galsomes can provide controllable, multifaceted, and effective antitumor immunity, especially when combined with checkpoint inhibition

    Systematic optimization of fermentation conditions for in vitro fermentations with fecal inocula

    Get PDF
    In vitro fermentation strategies with fecal inocula are considered cost-effective methods to gain mechanistic insights into fecal microbiota community dynamics. However, all in vitro approaches have their limitations due to inherent differences with respect to the in vivo situation mimicked, introducing possible biases into the results obtained. Here, we aimed to systematically optimize in vitro fermentation conditions to minimize drift from the initial inoculum, limit growth of opportunistic colonizers, and maximize the effect of added fiber products (here pectin) when compared to basal medium fermentations. We evaluated the impact of varying starting cell density and medium nutrient concentration on these three outcomes, as well as the effect of inoculation with fresh vs. stored fecal samples. By combining GC–MS metabolite profiling and 16 s rRNA gene-based amplicon sequencing, we established that starting cell densities below 1010 cells/ml opened up growth opportunities for members the Enterobacteriaceae family. This effect was exacerbated when using fecal samples that were stored frozen at −80°C. Overgrowth of Enterobacteriaceae resulted in lowered alpha-diversity and larger community drift, possibly confounding results obtained from fermentations in such conditions. Higher medium nutrient concentrations were identified as an additional factor contributing to inoculum community preservation, although the use of a less nutrient dense medium increased the impact of fiber product addition on the obtained metabolite profiles. Overall, our microbiome observations indicated that starting cell densities of 1010 cells/ml limited opportunities for exponential growth, suppressing in vitro community biases, whilst metabolome incubations should preferably be carried out in a diluted medium to maximize the impact of fermentable substrates

    Aqueous Flow Reactor and Vapour-Assisted Synthesis of Aluminium Dicarboxylate Metal-Organic Frameworks with Tuneable Water Sorption Properties

    Get PDF
    Energy-efficient indoors temperature and humidity control can be realised by using the reversible adsorption and desorption of water in porous materials. Stable microporous aluminium-based metal-organic frameworks (MOFs) present promising water sorption properties for this goal. The development of synthesis routes that make use of available and affordable building blocks and avoid the use of organic solvents is crucial to advance this field. In this work, two scalable synthesis routes under mild reaction conditions were developed for aluminium-based MOFs: (1) in aqueous solutions using a continuous-flow reactor and (2) through the vapour-assisted conversion of solid precursors. Fumaric acid, its methylated analogue mesaconic acid, as well as mixtures of the two were used as linkers to obtain polymorph materials with tuneable water sorption properties. The synthesis conditions determine the crystal structure and either the MIL-53 or MIL-68 type structure with square-grid or kagome-grid topology, respectively, is formed. Fine-tuning resulted in new MOF materials thus far inaccessible through conventional synthesis routes. Furthermore, by varying the linker ratio, the water sorption properties can be continuously adjusted while retaining the sigmoidal isotherm shape advantageous for heat transformation and room climatisation applications

    Dieticians' intentions to recommend functional foods: The mediating role of consumption frequency of functional foods

    Get PDF
    This study explored the conceptual framework of dieticians' intentions to recommend functional food and the mediating role of consumption frequency. A web-based survey was designed using a self-administered questionnaire. A sample of Korean dieticians (N=233) responded to the questionnaire that included response efficacy, risk perception, consumption frequency, and recommendation intention for functional foods. A structural equation model was constructed to analyze the data. We found that response efficacy was positively related to frequency of consumption of functional foods and to recommendation intention. Consumption frequency also positively influenced recommendation intention. Risk perception had no direct influence on recommendation intention; however, the relationship was mediated completely by consumption frequency. Dieticians' consumption frequency and response efficacy were the crucial factors in recommending functional foods. Dieticians may perceive risks arising from the use of functional foods in general, but the perceived risks do not affect ratings describing dieticians' intentions to recommend them. The results also indicated that when dieticians more frequently consume functional foods, the expression of an intention to recommend functional foods may be controlled by the salience of past behaviors rather than by attitudes

    Stroma-regulated HMGA2 is an independent prognostic marker in PDAC and AAC

    Get PDF
    Background: The HMGA2 protein has experimentally been linked to EMT and cancer stemness. Recent studies imply that tumour-stroma interactions regulate these features and thereby contribute to tumour aggressiveness. Methods: We analysed 253 cases of pancreatic ductal adenocarcinoma (PDAC) and 155 cases of ampullary adenocarcinoma (AAC) for HMGA2 expression by IHC. The data were correlated with stroma abundance and supplemented by experimental studies. Results: HMGA2 acts as an independent prognostic marker associated with a significantly shorter overall survival in both tumour types. Overall, HMGA2-positivity was more frequent in patients with PDAC than with AAC. The HMGA2 status in tumour cells significantly correlated with the abundance of PDGFRβ-defined stroma cells. In vivo co-injection of Panc-1 cancer cells with pancreatic stellate cells increased tumour growth in a manner associated with increased HMGA2 expression. Furthermore, in vitro treatment of Panc-1 with conditioned media from PDGF-BB-activated stellate cells increased their ability to form tumour spheroids. Conclusions: This study identifies HMGA2 expression in tumour cells as an independent prognostic marker in PDAC and AAC. Correlative data analysis gives novel tissue-based evidence for a heterotypic cross-talk with stroma cells as a possible mechanism for HMGA2 induction, which is further supported by experimental models

    European guideline on IgG4-related digestive disease – UEG and SGF evidence-based recommendations

    Get PDF
    The overall objective of these guidelines is to provide evidence-based recommendations for the diagnosis and management of immunoglobulin G4 (IgG4)-related digestive disease in adults and children. IgG4-related digestive disease can be diagnosed only with a comprehensive work-up that includes histology, organ morphology at imaging, serology, search for other organ involvement, and response to glucocorticoid treatment. Indications for treatment are symptomatic patients with obstructive jaundice, abdominal pain, posterior pancreatic pain, and involvement of extra-pancreatic digestive organs, including IgG4-related cholangitis. Treatment with glucocorticoids should be weight-based and initiated at a dose of 0.6–0.8 mg/kg body weight/day orally (typical starting dose 30-40 mg/day prednisone equivalent) for 1 month to induce remission and then be tapered within two additional months. Response to initial treatment should be assessed at week 2–4 with clinical, biochemical and morphological markers. Maintenance treatment with glucocorticoids should be considered in multi-organ disease or history of relapse. If there is no change in disease activity and burden within 3 months, the diagnosis should be reconsidered. If the disease relapsed during the 3 months of treatment, immunosuppressive drugs should be added

    Environmentally sustainable food consumption : a review and research agenda from a goal-directed perspective

    Get PDF
    The challenge of convincing people to change their eating habits toward more environmentally sustainable food consumption (ESFC) patterns is becoming increasingly pressing. Food preferences, choices and eating habits are notoriously hard to change as they are a central aspect of people's lifestyles and their socio-cultural environment. Many people already hold positive attitudes toward sustainable food, but the notable gap between favorable attitudes and actual purchase and consumption of more sustainable food products remains to be bridged. The current work aims to (1) present a comprehensive theoretical framework for future research on ESFC, and (2) highlight behavioral solutions for environmental challenges in the food domain from an interdisciplinary perspective. First, starting from the premise that food consumption is deliberately or unintentionally directed at attaining goals, a goal-directed framework for understanding and influencing ESFC is built. To engage in goal-directed behavior, people typically go through a series of sequential steps. The proposed theoretical framework makes explicit the sequential steps or hurdles that need to be taken for consumers to engage in ESFC. Consumers need to positively value the environment, discern a discrepancy between the desired versus the actual state of the environment, opt for action to reduce the experienced discrepancy, intend to engage in behavior that is expected to bring them closer to the desired end state, and act in accordance with their intention. Second, a critical review of the literature on mechanisms that underlie and explain ESFC (or the lack thereof) in high-income countries is presented and integrated into the goal-directed framework. This contribution thus combines a top-down conceptualization with a bottom-up literature review; it identifies and discusses factors that might hold people back from ESFC and interventions that might promote ESFC; and it reveals knowledge gaps as well as insights on how to encourage both short- and long-term ESFC by confronting extant literature with the theoretical framework. Altogether, the analysis yields a set of 33 future research questions in the interdisciplinary food domain that deserve to be addressed with the aim of fostering ESFC in the short and long term
    • …
    corecore