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Abstract: Energy-efficient indoors temperature and humidity
control can be realised by using the reversible adsorption
and desorption of water in porous materials. Stable micropo-

rous aluminium-based metal–organic frameworks (MOFs)
present promising water sorption properties for this goal.
The development of synthesis routes that make use of avail-
able and affordable building blocks and avoid the use of or-
ganic solvents is crucial to advance this field. In this work,

two scalable synthesis routes under mild reaction conditions
were developed for aluminium-based MOFs: (1) in aqueous

solutions using a continuous-flow reactor and (2) through
the vapour-assisted conversion of solid precursors. Fumaric

acid, its methylated analogue mesaconic acid, as well as mix-

tures of the two were used as linkers to obtain polymorph
materials with tuneable water sorption properties. The syn-

thesis conditions determine the crystal structure and either

the MIL-53 or MIL-68 type structure with square-grid or
kagome-grid topology, respectively, is formed. Fine-tuning

resulted in new MOF materials thus far inaccessible through
conventional synthesis routes. Furthermore, by varying the

linker ratio, the water sorption properties can be continu-
ously adjusted while retaining the sigmoidal isotherm shape

advantageous for heat transformation and room climatisa-

tion applications.

Introduction

The broad family of porous materials finds widespread use in

catalysis,[1] adsorptive separations[2] and ion exchange,[3] among
many other applications. As a relatively young branch of this
family tree,[4] metal–organic frameworks (MOFs) are under eval-

uation for several real-life applications. They represent a versa-
tile group of compounds with record-breaking surface areas
(>7000 m2 g@1)[5] and promising properties for sensing,[6] gas
capture and separation[7, 8] and heat exchange.[9] Nevertheless,

no large-scale applications have been implemented thus far.
One challenge lies in the often hazardous and low-yielding

synthesis conditions of MOFs. To overcome these challenges,
synthesis protocols suitable for industrial scale-up have to be
developed while taking into account pricing of the final prod-
uct.[10, 11] In this respect, a particularly interesting MOF is alumi-
nium fumarate, also known as Al-MIL-53-Fum (MIL = Material

Institute Lavoisier).[12] It exhibits high porosity and stability,
even under hydrothermal stress,[13] and therefore has sparked

the interest of industrial researchers.[14] In particular, the sig-

moidal water ad-/desorption curve without hysteresis demon-
strated by Al-MIL-53-Fum and other Al-MOFs is attractive for

applications in heat-exchange devices.[15–19] The patented syn-
thesis of Al-MIL-53-Fum is a hydrothermal batch process that

makes use of inexpensive and readily available starting materi-
als (fumaric acid, NaOH, aluminium sulfate) and avoids hazard-
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ous solvents such as dimethylformamide.[20] Similar, mild syn-

thesis conditions (,100 8C) have been demonstrated for

other Al-MOFs,[21–24] thereby avoiding pressure build-up. Also,
synthesis methods based on extrusion, microwave-assisted

heating and starting from insoluble metal ion sources have
been reported.[25–27] For the further scale-up of these MOFs, it

can be desirable to move to continuous production in flow re-
actors as multiplying the output volume through multiple

tubes in parallel enables more control compared with larger di-

mension batch reactors.[28, 29] An alternative elegant approach
to green and scalable MOF synthesis would be the conversion

of non-salt precursors using no or minimal amounts of solvent.
Several oxide-based solvent-free syntheses or vapour-assisted

methods have been reported, although only for MOFs based
on divalent metal ions (e.g. , Cu2 + , Zn2 +).[30–32] To date, vapour-
assisted synthesis of MOFs based on tri- and tetravalent metal

ions (e.g. , Fe3+ , Al3 + , Zr4 +) has required the use of metal
salts.[33]

In this contribution, we investigate the flow reactor (fr) and
vapour-assisted (va) synthesis of Al-MIL-53-Fum and related

mixed-linker Al-MOFs (Figure 1) to find efficient scalable prepa-
ration methods for materials with improved water sorption

properties. Salt and non-salt aluminium precursors were used.
The tested linker molecules are fumaric acid (H2Fum) and me-
saconic acid (methylfumaric acid, H2Mes), and combinations

thereof. Although H2Fum is industrially available, H2Mes can be
derived from readily available citric acid.[34] The resulting MOFs

crystallise either in a square- or kagome-grid topology as ob-
served in Al-MIL-53-Fum[35] and Al-MIL-68-Mes,[35] respectively.

All materials were characterised for their structural and sorp-

tion properties.

Experimental Section

Flow reactor set-up

The flow reactor set-up is similar to the one recently described by
the Stock group. Details regarding the reactor volume, flow rates
and achievable temperatures are given in the Supporting Informa-
tion (Section S2.1 in the Supporting Information).[36, 37] The three sy-
ringes of the reactor are loaded with (i) an aqueous 0.05 m alumini-
um sulfate solution, (ii) an aqueous solution of linker mixtures
(0.1 m) and KOH (0.3 m) and (iii) water, respectively (Figure 1, top).
In a typical procedure, only the precursor solutions (i and ii) are ini-
tially pumped through the tubes and mixed via a quadruple cross
connector before passing to the reactor, which consists of a coiled
Teflon tube heated in an oil bath. Once the reactor is filled, the
water syringe (iii) is used to push the remaining precursor solution
and the product slurry out of the reactor. The obtained product
was centrifuged and washed with ethanol.

Vapour-assisted conversion process

Mixtures of aluminium nitride (AlN) and linker powders (1:2 ratio,
200 mg) were placed in a 25 mL sealed glass bottle together with
glass vials containing 1 mL of liquid to generate vapours (Figure 1,
bottom). After 48 h reaction at 80 8C in a pre-heated oven, the
vapour and excess ligand were removed by heating the powder in
vacuum at 200 8C for 2 h. Eventually, the material was calcined at
300 8C for 12 h.

Additional information

Materials and methods, syntheses optimization details, structure re-
finements and fits, characterisation data (1H NMR, elemental analy-
sis, TGA, FTIR, SEM, N2 sorption, PALS), and linker vapour pressure
data can be found in the Supporting information.

Deposition Number 1918969 contains the supplementary crystallo-
graphic data for this paper. These data are provided free of charge
by the joint Cambridge Crystallographic Data Centre and
Fachinformationszentrum Karlsruhe Access Structures service
www.ccdc.cam.ac.uk/structures.

Figure 1. Flow reactor (fr) and vapour-assisted (va) synthesis of MOFs. Starting from different aluminium precursors, but making use of the same fumaric and
mesaconic acid linkers, single- and mixed-linker frameworks can be obtained, with the topology and space group depending on the synthesis method.
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Results and Discussion

Flow reactor (fr) synthesis

Single-linker fr-Al-MIL-53-Fum and fr-Al-MIL-68-Mes

For the synthesis optimization of fr-Al-MIL-53-Fum, different

metal-to-linker ratios (2:1, 1:1, 1:2) and different reaction times,
determined by the flow rate, were investigated at a reaction

temperature of 80 8C. A 1:1 metal-to-linker ratio and 15 min

residence time in the flow reactor were identified as the opti-
mal reaction conditions for the synthesis of fr-Al-MIL-53-Fum

(Table S2.1 in the Supporting Information). For the synthesis of
fr-Al-MIL-68-Mes, identical conditions (1:1 ratio, 15 min) were

found to be optimal (Table S2.2 in the Supporting Information).
The phase purity of both MOFs was confirmed by PXRD (Le
Bail fits Figures S4.1 and S4.2 in the Supporting Information),

the composition was confirmed by 1H NMR spectroscopy (Sec-
tion S5 in the Supporting Information), elemental analysis (Sec-

tion S6 in the Supporting Information), thermogravimetric anal-
ysis (Section S7 in the Supporting Information), IR spectroscopy

(Section S8 in the Supporting Information) and the morpholo-
gy was investigated by electron microscopy (Section S9 in the

Supporting Information).

Vapour-assisted (va) synthesis

Aluminium nitride as a reactive precursor

Under mild conditions (80 8C), aluminium oxide will not react
to form Al-MIL-53-Fum, even in the presence of water vapour,

whereas aluminium nitride does (Table S3.1 in the Supporting

Information). The higher reactivity of the nitride is due to the
softer Al@N bonds, which are favourably replaced by the

harder Al@O bonds formed with dicarboxylate linkers.[38] At
room temperature in moist air (80 % relative humidity, RH),

complete hydrolysis of aluminium nitride to aluminium hydrox-
ide can be achieved, but only after prolonged reaction times

(>400 h for micron-sized particles).[39] The conversion to Al-

MOFs requires a high relative humidity (94 %), yet is incom-
plete when only water vapour is present (Figures S3.2 and S3.4
in the Supporting Information). Likely, the MOF forming at the
surface of micron-sized aluminium nitride particles hinders fur-

ther conversion.[40] Indeed, surface treatment of aluminium ni-
tride with various acids that bind to Al3 + (e.g. , phosphoric

acid, acetic acid) is known to delay or prevent hydrolysis.[41]

Solvent-free activation conditions

Powder X-ray diffraction (PXRD) measured for the as-synthe-

sized materials reveals the presence of the MOF, excess ligand
and unreacted aluminium nitride (Figure S3.4 in the Support-

ing Information). To avoid washing with organic solvents, a

two-step activation treatment was optimized that takes ad-
vantage of the high thermal stability of Al-MIL-53 materials[42]

(>350 8C): (1) sublimation of the excess linker at 200 8C under
vacuum, followed by (2) calcination at 300 8C to remove ad-

sorbed linker from the pores. Without calcination, no porosity
is detected (Brunauer–Emmett–Teller, BET, surface area

<25 m2 g@1), whereas after calcination the Type I isotherm ex-
pected for microporous materials is observed (Figure S3.3 in

the Supporting Information). In situ temperature-dependent
PXRD shows the sublimation of crystalline linker around

200 8C. Also, the intensity of the framework reflection at ap-
proximately 13.38, indicative of electron density in the pores,

thus linker molecules, gradually disappears around 300 8C (Fig-
ures S3.6 and S3.7 in the Supporting Information). Still, calcina-

tion steps bring additional energetic costs and should there-

fore preferably be performed by using low-grade waste heat,
thus at temperatures ,250 8C.[43]

Formic acid vapour as synthesis modulator

Formic acid has been used elsewhere to modulate the solvo-
thermal synthesis of Al-MIL-53-Fum, resulting in improved iso-

therms and kinetics for water adsorption.[44] When applied to
the vapour-assisted synthesis of Al-MIL-53-Fum, full conversion

of aluminium nitride can be achieved through the addition of
formic acid vapour to the reaction atmosphere. Moreover, the

presence of formic acid vapour allows MOF formation under

lower relative humidity (79 %; Figure S3.8 in the Supporting In-
formation). Only a trace amount of nitrogen and formate ions

(<1 %) is found in the final product by elemental analysis and
1H NMR spectroscopy, respectively (Sections S5 and S6 in the

Supporting Information). Formate is likely incorporated in the
framework during synthesis, but it is removed upon thermal

activation.[45] The organic content quantified by thermogravim-

etry matches the expected aluminium fumarate chemical for-
mula ([Al(OH)(Fum)]) and confirms full aluminium nitride con-

version (Section S7 in the Supporting Information). IR spectros-
copy reveals no significant difference between materials syn-

thesized under solvothermal conditions and under vapour-as-
sisted conditions in the presence or absence of formic acid

(Figure S3.9 in the Supporting Information). Besides the ab-

sence of residual crystalline AlN, PXRD indicates a change in
the space group symmetry of the Al-MIL-53-Fum product

when the synthesis takes place in the presence of formic acid
vapour (Figure 1, left). va-Al-MIL-53-Fum crystallises in the or-

thorhombic crystal system as indicated by a Pawley fit in the
space group Pnma (Figure S4.5 in the Supporting Information).

In contrast, in the absence of formic acid vapour (Figure S3.8
in the Supporting Information) or in solvothermal reactions

(flow reactor and batch synthesis), a product crystallising in

the monoclinic space group P21/c is obtained, even when
formic acid is used as a modulator in solution.[44] va-Al-MIL-53-

Fum has a BET surface area of 592 m2 g@1, which is much lower
than the surface area of fr-Al-MIL-53-Fum (1000 m2 g@1) and

that from the reported batch synthesis (1080 m2 g@1).[12] How-
ever, the reduced porosity is ascribed to the different pore ge-

ometries of the different crystal structures. The pore size in va-

Al-MIL-53-Fum (Pnma) is contracted in comparison to fr-Al-MIL-
53-Fum (P21/c). Positron Annihilation Lifetime Spectroscopy

(PALS) measurements evidence this difference in the pore di-
mensions. For va-Al-MIL-53-Fum (Pnma), free-volume elements

with a diameter of 3.5 a are observed, whereas for fr-Al-MIL-
53-Fum (P21/c) a much larger diameter of 5.9 a is detected
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(Table S12.1 in the Supporting Information). These values are in
good agreement with the size of the largest sphere that would

fit in the pores, respectively, 4.1 a and 5.8 a, calculated by
Monte Carlo sampling using Zeo + + .[46] Furthermore, simula-

tions with RASPA indicate a difference in surface area of 32 %
between va-Al-MIL-53-Fum (Pnma) and fr-Al-MIL-53-Fum (P21/

c), in line with the experimental data (41 %).[47] As for Al-MIL-
53-Fum (P21/c),[12] no framework flexibility is observed for va-
Al-MIL-53-Fum (Figure S3.6 in the Supporting Information).

Still, alternative synthesis modulators to the corrosive formic
acid are desirable for industrial production and should be fur-
ther investigated.

Novel Al-MIL-53-Mes material

By replacing fumaric acid with mesaconic acid, the optimized
vapour-assisted synthesis conditions with formic acid as modu-
lator yield va-Al-MIL-53-Mes. The MIL-53 type structure is
formed under these conditions, in contrast to the MIL-68 type

product from flow and batch reactor syntheses (Figure 1,
right). The crystal structure was confirmed by Rietveld refine-
ment (Figure 2). Al-MIL-53-Mes is a new microporous MOF ma-
terial that crystallises in the orthorhombic space group Pnma,
has a BET surface area of 527 m2 g@1 and a micropore volume

of 0.169 cm3 g@1 (theoretical value: 0.210 cm3 g@1). The forma-
tion of Al-MIL-53-Mes illustrates the potential of vapour-assist-

ed conditions to obtain new materials not accessible under

solvothermal reaction conditions.

Mixed-linker MOFs with tuneable properties

The optimised fr- and va-synthesis conditions for the single-
linker MOFs were used for the synthesis of mixed-linker materi-

als. For the fr-syntheses, both linkers were dissolved in aque-
ous KOH. For the va-synthesis, physical mixtures of the linker

powders were used. The ratio of fumaric and mesaconic acid
was varied from 0 to 100 % in 10 % steps for both approaches

to obtain mixed-linker MIL-53 and MIL-68 MOFs. IR spectrosco-
py shows the incorporation of both linkers in the framework

(Section S8 in the Supporting Information). As for the single-
linker MOFs, elemental analysis shows only small impurities

from the precursor, sulfur and nitrogen in the fr- and va-prod-
ucts, respectively (Section S6 in the Supporting Information).
1H NMR spectroscopy confirms the absence of formate ions in
the activated va-products (Section S5 in the Supporting Infor-
mation). All fr-materials and va-materials are large aggregates
of crystallites smaller than 1 mm, with the crystallites from va-
synthesis having a more elongated shape and a larger size
(Section S9 in the Supporting Information). The fraction of
each linker was quantified by 1H NMR spectroscopy after dis-

solving the activated MOF. For the fr-products, the linker ratio

is close to the one in the precursor solution (<3 % deviation),
meaning there is no preferential linker incorporation (Fig-

ure 3 I). The composition of the va-products also follows the

Figure 2. Al-MIL-53-Mes prepared by vapour-assisted synthesis : (main) Riet-
veld refinement from PXRD data; (inset) N2 physisorption isotherm and crys-
tal structure. Red stars indicate traces of an unidentified crystalline impurity.
Filled dots in the isotherm correspond to the adsorption branch, empty dots
to the desorption branch.

Figure 3. Mixed-linker aluminium fumarate/mesaconate frameworks pre-
pared by using the flow reactor (left) or vapour-assisted synthesis (right)
show properties dependent on the mesaconate content: (I, II) linker incorpo-
ration; (II, IV) unit cell dimensions and MOF topology; (V, VI) decomposition
temperature. Coloured area and dashed lines are guides to the eyes. Only
two unit cell edges are displayed for clarity, showing a discontinuity be-
tween two structure types (flow reactor) and a linear change characteristic
of a solid solution in the material (vapour-assisted).
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ratio in the linker powder mixture (<10 % deviation). However,
a slight preference is observed for mesaconate or fumarate, re-

spectively, below and above 65 % mesaconate content (Fig-
ure 3 II). At constant temperature and with excess solid linker

present, the partial pressure of both H2Fum and H2Mes is inde-
pendent of their ratio in the solid phase. Based on thermogra-

vimetric measurements and the Knudsen effusion method, an
approximately 4.5 times higher vapour pressure was deter-
mined for mesaconic acid at the reaction temperature (Sec-

tion S11 in the Supporting Information). For an equilibrium re-
action, products with a constant linker ratio are expected as

long as each linker maintains its saturation vapour pressure
(i.e. , as long as solid linker is present). Nevertheless, as the in-

corporated linker ratio is not constant but varies with the solid
linker mixture composition, it appears that the va-synthesis of

mixed-linker MOFs is not an equilibrium reaction but rather
under kinetic control. In other words, the rate of linker subli-
mation, which scales with the linker fraction in the reaction
mixture, determines the composition of the mixed-linker MOFs
in the va-route. Lastly, the organic content in the materials was

quantified by thermogravimetry. For the va-materials, the ob-
tained values match very well the theoretical values, whereas

for the fr-materials they are generally lower, suggesting the

slight presence of (hydr)oxide impurities (Tables S7.1 and S7.2
in the Supporting Information).

fr: the linker ratio directs the topology

The fr-products exhibit a MIL-53 type structure at mesaconate

contents below 40 %, and a MIL-68 type structure above 60 %

mesaconate. Thus, the linker present in the highest concentra-
tion determines the resulting framework topology in the fr-

route. Between 40 % and 60 % mesaconate, mixed phases are
observed (Figure 3 III). In situ PXRD measurements in batch re-

actors show that for all linker ratios the final products crystal-
lise directly from the precursor solution, without the formation

of transient phases (Figure 4).

va: MIL-53 topology at all linker ratios–solid solutions

Only the square-grid MIL-53 structure was observed for the va-

products, independent of the linker ratio. The lattice parame-
ters b and c extracted from the position of the (0 11) reflection

by Pawley fits change linearly with increasing mesaconate con-

tent (Figure 3 IV), whereas a remains constant (6.62:0.03 a).
According to Vegard’s law,[48] the mixed-linker MOFs obtained

via va-synthesis can thus be considered solid solutions. Con-
versely, the cell parameters of the fr-products remained con-

stant (Figure 3 III). However, as mentioned before, the va-Al-
MIL-53 materials crystallise in the orthorhombic space group

Pnma whereas for the fr-Al-MIL-53 materials the best fit is ob-

served in the monoclinic space group P21/c.

Thermal stability

All materials show high thermal stability in air (>350 8C). For
the fr-materials, the decomposition temperature, calculated as

the inflection point of the wt %–T curve upon decomposition,
are in the range 425–465 8C (Figure 3 V), in line with the values

observed by temperature-dependent PXRD (Figure S2.4 in the

Supporting Information). For the va-Al-MIL-53 samples, a con-
tinuous decrease in decomposition temperature from approxi-

mately 470 to 395 8C is observed with increasing mesaconate
content (Figure 3 VI). Between 65 % and 100 % mesaconate, the

decomposition temperature drops more rapidly.

Figure 4. Results of the in situ PXRD experiment during hydrothermal batch
synthesis of mixed-linker materials. The final phase is formed directly from
the synthesis solution, and is dictated by the linker ratio in the synthesis sol-
utions, expressed as the mesaconate linker fraction. The simulated PXRD
pattern for Al-MIL-53-Fum (bottom) and Al-MIL-68-Mes (top) are given for
comparison. The X-ray energy for the synchrotron experiments and simula-
tions is 60 keV.
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Sorption properties and water cycling

Water and nitrogen sorption measurements were carried out
to investigate the effect of the crystal structure and the frac-

tion of bulky and hydrophobic mesaconate linker on the sorp-
tion properties. The mixed-linker fr-materials with MIL-53 type

structure show a specific surface area comparable to Al-MIL-
53-Fum (approx. 1000 m2 g@1),[12] yet slowly decrease with in-
creasing mesaconate content (Figure 5). The surface area of

the mixed-linker fr-Al-MIL-68 samples is slightly higher, as ex-
pected from literature data for Al-MIL-68-Mes (1040 m2 g@1).[35]

Especially at 60 % and 80 % mesaconate, the materials exhibit a
surprisingly but reproducibly high surface area of up to nearly

1400 m2 g@1 and a substantially higher decomposition tempera-
ture. With respect to the water uptake capacity, the fr-materials

show similar performance (42:5 wt % at 60 % RH), independ-

ent of the crystal structure (Figure 5 c). However, the influence
of the increasing mesaconate content is clear from the shape

of the water sorption isotherm. The sigmoidal isotherms show
a sharp uptake at a specific relative pressure (Figure 6). This

‘adsorption edge’, defined as the RH value at the inflection
point of the isotherm, shifts linearly from 30 to 50 % RH with

increasing mesaconate content (Figure 5 a).
Similar to the single-linker materials, mixed-linker va-Al-MIL-

53 materials, crystallising in the orthorhombic space group

Pnma, are porous but display lower surface areas than their
monoclinic fr-counterparts. Although a continuous decrease in

surface area would be expected with increasing mesaconate
content, a minimum is found at 65 % mesaconate (Figure 5 f).

This composition corresponds to the most hydrophobic mate-
rial as indicated by the highest adsorption edge at 59 % RH

(Figure 5 b). At a mesaconate content lower than 65 %, the ex-
pected decrease of the adsorption edge and increase in water
uptake capacity is observed (Figure 5 d). At a mesaconate con-

tent higher than 65 %, the water uptake capacity decreases
and the isotherms gradually lose their sigmoidal shape,

making it impossible to determine the adsorption edge
(Figure 6).

The material sorption properties determine its application
potential and which fields can be targeted. When compared
with best-in-class water adsorbents, the va- and fr-materials

are competitive as they show comparable water uptakes. Fur-
ther, the adsorption edge of the fr-Al-MIL-53 materials (30–

38 % RH), fr-Al-MIL-68 materials (46–50 % RH) and va-Al-MIL-53
materials (42–59 % RH) is comparatively higher (Figure 7),[49, 50]

Figure 5. Mixed-linker fumarate/mesaconate frameworks prepared by using
the flow reactor (left) or vapour-assisted synthesis (right) show tuneable
water adsorption based on the mesaconate content: (a, b) adsorption edge
of the volumetric water sorption isotherm; (c, d) gravimetric water uptake at
60 % relative humidity calculated from the volumetric water sorption iso-
therm; (e, f) BET surface area calculated from N2 sorption isotherms. The
dashed lines are a guide to the eye.

Figure 6. Water adsorption isotherms for mixed-linker aluminium fumarate/
mesaconate MOFs prepared by va-synthesis (top) and fr-synthesis (bottom).
The volumetric isotherms were collected at 25 8C.
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and covers not only the desired range for heat transformation

applications (5–40 % RH), but also the desired range for room
climatisation (40–60 % RH).[51]

Conclusion

Two potentially scalable synthesis methods were developed to
obtain single and mixed-linker aluminium dicarboxylate MOFs

under mild conditions. Depending on the synthesis conditions,
the crystallisation can be directed to different structure types,

yielding materials with tuneable water sorption properties.
These results will hopefully foster further research in the inte-
gration of MOFs in heat-exchange or room climatisation devi-
ces. The discovery of a novel compound through vapour-assist-
ed synthesis indicates the opportunities in solvent-free MOF

synthesis and processing.
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