209 research outputs found

    The land evaluation tool within the Tanzania Food and Land Productivity Information System - A new and simple Web-GIS application for public use

    Get PDF
    Within the framework of the transdisciplinary Trans-SEC project, financed by BMBF, it appeared necessary to develop a web-based GIS environment. This serves on the one hand the collection of available spatial data on the whole of Tanzania, but project internal data, too. Apart from natural resource data collections and a map viewer, two tools have been implemented. The first one is the Tanzania Food Security Monitor. It automatically calculates in a ten-days cycle based o the Water Requirement Sastisfaction Index the potential maize production in order to pre-inform on potential food shortages. The second tool is dedicated to land evaluation. The basic idea was to provide an easy to handle but flexible tool that allows mainly project developers to ex-ante evaluate the potential of agricultural innovations within their region of interest. The tool is based on FAO principles and provides background data layers that have been provided with respect to soil by ISRIC http://www.isric.org/content/african-soilgrids-250m-geotiffs) and with respect to climate by the Potsdam Institute for Climate Impact Research. In a guided way the user is led through five steps to produce and download the evaluation results. After choosing the area of interest, own data layers can be uploaded as geo-tiffs. The crucial step is selection of input layers and the parameterization of these. With respect to the evaluation algorithm a mixture of Storie Index and Averages was chosen, the ratio of which can be adapted. Finally the evaluation results can be downloaded as classified or non classified geo-tiffs for further processing in a desktop GIS. Since the procedure is globally applicable, it is intended to transfer the tool to other regions of the world

    Hydrodynamics of a high Alpine catchment characterized by four natural tracers

    Get PDF
    Hydrological processes in high-elevation catchments are strongly influenced by alternating snow accumulation and melt in addition to summer rainfall. Although diverse water sources and flow paths that generate streamflow in the world's water towers emerge from these two driving inputs, a detailed process understanding remains poor. We measured a combination of natural tracers of water at a high frequency, including stable isotope compositions, electrical conductivity (EC), and water and soil temperature to characterize hydrological processes in a snow-dominated Alpine catchment and to understand the diversity of streamflow sources and flow paths. Stable isotope composition of the sampled water revealed the prominence of snowmelt year-round (even during winter baseflow), and a strong flushing of the entire system with snowmelt at the start of the main melt period, sometimes referred to as the freshet, led to a reset, or return to baseline, of the isotopic values in most sampled water. Soil temperature measurements help identify snow-free periods and indicate sub-snowpack local flow, for example, in the case of rain-on-snow events. Water temperature measurements in springs can indicate flow path depth. EC measurements reflect the magnitude of subsurface exchange and allow for the separation of subsurface snowmelt contribution to streamflow from the contribution of stored groundwater. These insights into the details of streamflow generation in such a dynamic environment were only made possible due to intense, year-round water sampling. The sampled tracers are revealed to complement each other in important ways particularly because they were sampled during winter and spring, both snow-covered periods, the importance of which is a key implication of this work.</p

    New Biotite and Muscovite Isotopic Reference Materials, USGS57 and USGS58, for δ2H Measurements–A Replacement for NBS 30

    Get PDF
    The advent of continuous-flow isotope-ratio mass spectrometry (CF-IRMS) coupled with a high temperature conversion (HTC) system enabled faster, more cost effective, and more precise δ2H analysis of hydrogen-bearing solids. Accurate hydrogen isotopic analysis by on-line or off-line techniques requires appropriate isotopic reference materials (RMs). A strategy of two-point calibrations spanning δ2H range of the unknowns using two RMs is recommended. Unfortunately, the supply of the previously widely used isotopic RM, NBS 30 biotite, is exhausted. In addition, recent measurements have shown that the determination of δ2H values of NBS 30 biotite on the VSMOW-SLAP isotope-delta scale by on-line HTC systems with CF-IRMS may be unreliable because hydrogen in this biotite may not be converted quantitatively to molecular hydrogen. The δ2HVSMOW-SLAP values of NBS 30 biotite analyzed by on-line HTC systems can be as much as 21 mUr (or ‰) too positive compared to the accepted value of −65.7 mUr, determined by only a few conventional off-line measurements. To ensure accurate and traceable on-line hydrogen isotope-ratio determinations in mineral samples, we here propose two isotopically homogeneous, hydrous mineral RMs with well-characterized isotope-ratio values, which are urgently needed. The U.S. Geological Survey (USGS) has prepared two such RMs, USGS57 biotite and USGS58 muscovite. The δ2H values were determined by both glassy carbon-based on-line conversion and chromium-based on-line conversion, and results were confirmed by off-line conversion. The quantitative conversion of hydrogen from the two RMs using the on-line HTC method was carefully evaluated in this study. The isotopic compositions of these new RMs with 1-σ uncertainties and mass fractions of hydrogen are: USGS57 (biotite) δ2HVSMOW-SLAP = −91.5 ± 2.4 mUr (n =24) Mass fraction hydrogen = 0.416 ± 0.002% (n=4) Mass fraction water = 3.74 ± 0.02% (n=4) USGS58 (muscovite) δ2HVSMOW-SLAP = −28.4 ± 1.6 mUr (n =24) Mass fraction hydrogen = 0.448 ± 0.002% (n=4) Mass fraction water = 4.03 ± 0.02% (n =4). These δ2HVSMOW-SLAP values encompass typical ranges for solid unknowns of crustal and mantle origin and are available to users for recommended two-point calibration

    A systematic review of contamination (aerosol, splatter and droplet generation) associated with oral surgery and its relevance to COVID-19

    Get PDF
    IntroductionThe current COVID-19 pandemic caused by the SARS-CoV-2 virus has impacted the delivery of dental care globally and has led to re-evaluation of infection control standards. However, lack of clarity around what is known and unknown regarding droplet and aerosol generation in dentistry (including oral surgery and extractions), and their relative risk to patients and the dental team, necessitates a review of evidence relating to specific dental procedures. This review is part of a wider body of research exploring the evidence on bioaerosols in dentistry and involves detailed consideration of the risk of contamination in relation to oral surgery.MethodsA comprehensive search of Medline (OVID), Embase (OVID), Cochrane Central Register of Controlled Trials, Scopus, Web of Science, LILACS and ClinicalTrials.Gov was conducted using key terms and MeSH (Medical Subject Headings) words relating to the review questions. Methodological quality including sensitivity was assessed using a schema developed to measure quality aspects of studies using a traffic light system to allow inter- and intra-study overview and comparison. A narrative synthesis was conducted for assessment of the included studies and for the synthesis of results.ResultsEleven studies on oral surgery (including extractions) were included in the review. They explored microbiological (bacterial and fungal) and blood (visible and/or imperceptible) contamination at the person level (patients, operators and assistants) and/or at a wider environmental level, using settle plates, chemiluminescence reagents or air samplers; all within 1 m of the surgical site. Studies were of generally low to medium quality and highlighted an overall risk of contaminated aerosol, droplet and splatter generation during oral surgery procedures, most notably during removal of impacted teeth using rotatory handpieces. Risk of contamination and spread was increased by factors, including proximity to the operatory site, longer duration of treatment, higher procedural complexity, non-use of an extraoral evacuator and areas involving more frequent contact during treatment.ConclusionA risk of contamination (microbiological, visible and imperceptible blood) to patients, dental team members and the clinical environment is present during oral surgery procedures, including routine extractions. However, the extent of contamination has not been explored fully in relation to time and distance. Variability across studies with regards to the analysis methods used and outcome measures makes it difficult to draw robust conclusions. Further studies with improved methodologies, including higher test sensitivity and consideration of viruses, are required to validate these findings

    InterCarb: a community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards

    Get PDF
    Increased use and improved methodology of carbonate clumped isotope thermometry has greatly enhanced our ability to interrogate a suite of Earth-system processes. However, interlaboratory discrepancies in quantifying carbonate clumped isotope (Δ47) measurements persist, and their specific sources remain unclear. To address interlaboratory differences, we first provide consensus values from the clumped isotope community for four carbonate standards relative to heated and equilibrated gases with 1,819 individual analyses from 10 laboratories. Then we analyzed the four carbonate standards along with three additional standards, spanning a broad range of δ47 and Δ47 values, for a total of 5,329 analyses on 25 individual mass spectrometers from 22 different laboratories. Treating three of the materials as known standards and the other four as unknowns, we find that the use of carbonate reference materials is a robust method for standardization that yields interlaboratory discrepancies entirely consistent with intralaboratory analytical uncertainties. Carbonate reference materials, along with measurement and data processing practices described herein, provide the carbonate clumped isotope community with a robust approach to achieve interlaboratory agreement as we continue to use and improve this powerful geochemical tool. We propose that carbonate clumped isotope data normalized to the carbonate reference materials described in this publication should be reported as Δ47 (I-CDES) values for Intercarb-Carbon Dioxide Equilibrium Scale

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus

    Get PDF
    Type 1 diabetes mellitus (T1DM) is due to the selective destruction of islet beta cells by immune cells. Current therapies focused on repressing the immune attack or stimulating beta cell regeneration still have limited clinical efficacy. Therefore, it is timely to identify innovative targets to dampen the immune process, while promoting beta cell survival and function. Liver receptor homologue-1 (LRH-1) is a nuclear receptor that represses inflammation in digestive organs, and protects pancreatic islets against apoptosis. Here, we show that BL001, a small LRH-1 agonist, impedes hyperglycemia progression and the immune-dependent inflammation of pancreas in murine models of T1DM, and beta cell apoptosis in islets of type 2 diabetic patients, while increasing beta cell mass and insulin secretion. Thus, we suggest that LRH-1 agonism favors a dialogue between immune and islet cells, which could be druggable to protect against diabetes mellitus.the Juvenile Diabetes Research Foundation (17-2013-372 to B.R.G.), the Consejeria de Salud, Fundacion Publica Andaluza Progreso y Salud, Junta de Andalucia (PI-0727-2010 to B.R.G. and P10CTS6505 to B.S.), Consejeria de Economia, Innovacion y Ciencia (P10.CTS.6359 to B.R.G.), the Ministerio de Economia y Competidividad cofunded by Fondos FEDER (PI10/00871, PI13/00593, and BFU2017-83588-P to B.R.G.; PI14/01015, RD12/0019/0028, and RD16/0011/0034 to B.S.; PI16/00259 to A. H.) and Deutsche Forschungsgemeinschaft (GRK-1789 ´CEMMA´ and DFG SCHI-505/ 6-1 to R.S.). Special thanks to the families of the DiabetesCero Foundation that graciously supported this work (to B.R.G.). A.M.M. is a recipient of a Miguel Servet grant (CP14/ 00105) from the Instituto de Salud Carlos III co-funded by Fondos FEDER whereas E.F. M. is a recipient of a Juan de la Cierva Fellowship. I.G.H.G. is supported by a fellowship from Amarna Therapeutics. In some instances, human islets were procured through the European Consortium for Islet Transplantation funded by Juvenile Diabetes Research Foundation (3-RSC-2016-162-I-X)
    corecore