29 research outputs found

    Balanced dynamics in the Tropics

    Get PDF
    For the shallow-water equations on an equatorial beta plane, the properties of low-frequency Rossby waves and (mixed) Rossby-gravity waves are investigated. It is shown that in the low-frequency limit the horizontal divergence of these solutions is zero and their geopotential satisfies = f, where f = y is the Coriolis parameter and is the stream function of the non-divergent velocity field. This type of balance is rather different from the geostrophic balance satisfied by Kelvin waves. It can be used to formulate a balanced potential vorticity equation in the single variable that, while filtering out Kelvin waves and inertia-gravity waves, exactly reproduces Rossby waves and Rossby-gravity waves in the low-frequency limit

    Studying biosphere-atmosphere exchange of CO2 through Carbon-13 stable isotopes

    Get PDF
    Summary Thesis ‘Studying biosphere-atmosphere exchange of CO2 through carbon-13 stable isotopes’ Ivar van der Velde Making predictions of future climate is difficult, mainly due to large uncertainties in the carbon cycle. The rate at which carbon is stored in the oceans and terrestrial biosphere is not keeping pace with the rapid increase in fossil fuel combustion and deforestation, resulting in an increase of atmospheric carbon dioxide (CO2). To gain a better understanding of the global carbon cycle we need to combine multiple sources of data into one consistent analysis, such as, forest and agricultural statistics, satellite data, atmospheric and ecological observations, and mechanistic models. This thesis describes fundamental research on some of the key components of the terrestrial carbon cycle, i.e., gross primary production (GPP) and terrestrial ecosystem respiration (TER) of CO2, which forms the key to improved prediction of net exchange. Droughts have been shown to strongly influence this exchange, and to interpret these responses adequately we have turned to a large collection of new atmospheric observations of CO2, and its 13C isotope (13CO2), to constrain key model components. In Chapter 2 we studied the global budget of atmospheric CO2 and the ratio of 13CO2/12CO2 (ή13C) and investigated the main terrestrial drivers of interannual variability (IAV) responsible for the observed atmospheric ή13C variations. In this chapter we introduced the SiBCASA biogeochemical model that we provided with a detailed isotopic discrimination scheme (to calculate the natural preference of 12CO2 over 13CO2 in uptake processes), separate 12C and 13C biogeochemical pools, and satellite-observed fire disturbances. This model was able to calculate uptake of 13CO2 and 12CO2 and produced return fluxes from its differently aged carbon pools, contributing to the so-called disequilibrium flux. Our simulated terrestrial isotope processes, plant discrimination and disequilibrium, closely resembled previously published values and similarly suggested that discrimination variations in C3 type plants and year-to-year variations in C3 and C4 productivity are the main drivers of IAV. The year-to-year variability in the terrestrial disequilibrium flux was much lower than required to match variations in atmospheric observations, under the common assumption of low variability in net ocean CO2 exchange, constant discrimination, and a closed CO2 budget. It was unclear how to increase IAV in the terrestrial biosphere, which suggested that SiBCASA missed adequate drought responses resulting in a latent isotope discrimination and variability in C3/C4 plant productivity. Implementation of carbon isotope cycling, biomass burning, and SiBCASA’s drought response were closely studied in Chapter 3. Our biomass burning emissions were similar as in CASA-GFED; both in magnitude and spatial patterns, and the implementation of isotope exchange gave a global mean discrimination value of approximately 15 ‰, and varied spatially depending on the photosynthetic pathway in the plant. These values compared well (annually and seasonally) with other published results. Similarly, the size of the terrestrial isotopic disequilibrium was close to that of other studies. As plants experience drought stress, they respond by closing their stomata to prevent the loss of water. This process also inhibits the uptake of CO2 and reduces the isotope discrimination against 13CO2 molecules. We found that the amplitude of drought response in SiBCASA was smaller than suggested by the measured isotope signatures. We also found that a slight increase in stomatal closure for large vapor pressure deficits amplified the variations in the respired isotope signature. Finally, we saw the need for modified starch/sugar storage pools to improve the propagation of isotopic discrimination anomalies to respiration on short-term time scales. In Chapter 4 we developed a multi-tracer inversion system to interpret signals in atmospheric CO2 and ή13C observations simultaneously. We wanted to know whether drought stress in plants can induce changes in atmospheric ή13C and whether they are interpretable. Using inverse modeling we were able to refine the discrimination parameter for plants as it reflected detectable variations in atmospheric ή13C. The results showed that the isotope discrimination values were consistently smaller during large severe droughts in the Northern Hemisphere, exceeding the estimates from SiBCASA (i.e., a larger reduction). Decreased discrimination suggested an increase in the regional intrinsic water use efficiency, which was also recorded at a large number of measurement sites. The IAV in net ecosystem exchange was relatively insensitive as we allowed the variability of the discrimination parameter to increase more than 8-fold, but it also allowed significant correlation between annual net exchange and discrimination. This study suggested a larger effect of droughts on discrimination than previously thought and that the treatment of drought response in biosphere models needs to be improved. Carbon cycle research is far from complete as many components are still largely uncertain, which prevents us from making better predictions of future climate. This thesis, however, highlights the importance of isotope observations to assess and improve biogeochemical models, especially with regard to the allocation and turnover of carbon, and responses to droughts.</p

    Towards multi-tracer data-assimilation: biomass burning and carbon isotope exchange in SiBCASA

    Get PDF
    We present an enhanced version of the SiBCASA photosynthetic/biogeochemical model for a future integration with a multi-tracer data-assimilation system. We extended the model with (a) biomass burning emissions from the SiBCASA carbon pools using remotely sensed burned area from Global Fire Emissions Database (GFED) version 3.1, (b) a new set of 13C pools that cycle consistently through the biosphere, and (c), a modified isotopic discrimination scheme to estimate variations in 13C exchange as a~response to stomatal conductance. Previous studies suggest that the observed variations of atmospheric 13C/12C are driven by processes specifically in the terrestrial biosphere rather than in the oceans. Therefore, we quantify in this study the terrestrial exchange of CO2 and 13CO2 as a function of environmental changes in humidity and biomass burning. Based on an assessment of observed respiration signatures we conclude that SiBCASA does well in simulating global to regional plant discrimination. The global mean discrimination value is 15.2‰, and ranges between 4 and 20‰ depending on the regional plant phenology. The biomass burning emissions (annually and seasonally) compare favorably to other published values. However, the observed short-term changes in discrimination and the respiration 13C signature are more difficult to capture. We see a too weak drought response in SiBCASA and too slow return of anomalies in respiration. We demonstrate possible ways to improve this, and discuss the implications for our current capacity to interpret atmospheric 13C observation

    Terrestrial cycling of (CO2)-C-13 by photosynthesis, respiration, and biomass burning in SiBCASA

    Get PDF
    We present an enhanced version of the SiBCASA terrestrial biosphere model that is extended with (a) biomass burning emissions from the SiBCASA carbon pools using remotely sensed burned area from the Global Fire Emissions Database (GFED), (b) an isotopic discrimination scheme that calculates 13C signatures of photosynthesis and autotrophic respiration, and (c) a separate set of 13C pools to carry isotope ratios into heterotrophic respiration. We quantify in this study the terrestrial exchange of CO2 and 13CO2 as a function of environmental changes in humidity and biomass burning. The implementation of biomass burning yields similar fluxes as CASA-GFED both in magnitude and spatial patterns. The implementation of isotope exchange gives a global mean discrimination value of 15.2‰, ranges between 4 and 20‰ depending on the photosynthetic pathway in the plant, and compares favorably (annually and seasonally) with other published values. Similarly, the isotopic disequilibrium is similar to other studies that include a small effect of biomass burning as it shortens the turnover of carbon. In comparison to measurements, a newly modified starch/sugar storage pool propagates the isotopic discrimination anomalies to respiration much better. In addition, the amplitude of the drought response by SiBCASA is lower than suggested by the measured isotope ratios. We show that a slight increase in the stomatal closure for large vapor pressure deficit would amplify the respired isotope ratio variability. Our study highlights the importance of isotope ratio observations of 13C to assess and improve biochemical models like SiBCASA, especially with regard to the allocation and turnover of carbon and the responses to drought

    Let's agree to disagree on operative versus nonoperative (LADON) treatment for proximal humerus fractures: study protocol for an international multicenter prospective cohort study

    Get PDF
    BackgroundThe proximal humerus fracture is a common injury, but the optimal management is much debated. The decision for operative or nonoperative treatment is strongly influenced by patient specific factors, regional and cultural differences and the preference of the patient and treating surgeon. The aim of this study is to compare operative and nonoperative treatment of proximal humerus fractures for those patients for whom there is disagreement about optimal management.Methods and analysisThis protocol describes an international multicenter prospective cohort study, in which all patients of 18 years and older presenting within three weeks after injury with a radiographically diagnosed displaced proximal humerus fracture can be included. Based on patient characteristics and radiographic images several clinical experts advise on the preferred treatment option. In case of disagreement among the experts, the patient can be included in the study. The actual treatment that will be delivered is at the discretion of the treating physician. The primary outcome is the QuickDash score at 12 months. Propensity score matching will be used to control for potential confounding of the relation between treatment modality and QuickDash scores.DiscussionThe LADON study is an international multicenter prospective cohort study with a relatively new methodological study design. This study is a "natural experiment" meaning patients receive standard local treatment and surgeons perform standard local procedures, therefore high participation rates of patients and surgeons are expected. Patients are only included after expert panel evaluation, when there is proven disagreement between experts, which makes this a unique study design. Through this inclusion process, we create two comparable groups whom received different treatments and where expert disagree about the already initiated treatment. Since we are zooming in on this particular patient group, confounding will be largely mitigated. Internationally the treatment of proximal humerus fractures are still much debated and differs much per country and hospital. This observational study with a natural experiment design will create insight into which treatment modality is to be preferred for patients in whom there is disagreement about the optimal treatment strategy.Clinical epidemiolog

    Measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential cross sections in pp collisions at s=7TeV

    Get PDF
    Differential cross sections as a function of transverse momentum pTpT are presented for the production of ϒ(nS)ϒ(nS) (n = 1, 2, 3) states decaying into a pair of muons. Data corresponding to an integrated luminosity of 4.9View the MathML sourcefb−1 in pp collisions at View the MathML sources=7TeV were collected with the CMS detector at the LHC. The analysis selects events with dimuon rapidity |y|<1.2|y|<1.2 and dimuon transverse momentum in the range View the MathML source10<pT<100GeV. The measurements show a transition from an exponential to a power-law behavior at View the MathML sourcepT≈20GeV for the three ϒ states. Above that transition, the ϒ(3S)ϒ(3S) spectrum is significantly harder than that of the ϒ(1S)ϒ(1S). The ratios of the ϒ(3S)ϒ(3S) and ϒ(2S)ϒ(2S) differential cross sections to the ϒ(1S)ϒ(1S) cross section show a rise as pTpT increases at low pTpT, then become flatter at higher pTpT

    Search for vectorlike charge 2/3 T quarks in proton-proton collisions at root(s)=8 TeV

    Get PDF
    Peer reviewe

    Modeling and Forecasting the Onset and Duration of Severe Radiation Fog under Frost Conditions

    No full text
    A case of a severe radiation fog during frost conditions is analyzed as a benchmark for the development of a very high resolution NWP model. Results by the Weather Research and Forecasting model (WRF) and the High resolution limited area model (HIRLAM) are evaluated against detailed observations to determine the state of the art in fog forecasting and to derive requirements for further research and development. For this particular difficult case, WRF is unable to correctly simulate the fog for none of the parameterizations and model configurations utilized. Contrary, HIRLAM does model the onset of fog, but is unable to represent it beyond the lowest model layer, which leads to an early dispersal of fog in the morning transition. The sensitivity of fog forecasts to model formulation is further analyzed with a high resolution single column version of HIRLAM, and with the Duynkerke (1991) single column model as a reference. The single column results are found to be sensitive to the proper specification of the external forcings. It is reconfirmed that high vertical resolution is essential for modeling the fog formation, the growth of the fog layer and when the fog lifts for the maintenance of a stratus deck. The properly configured column models are able to accurately model the onset of fog and its maturation, but fail in the simulation of fog persistence and subsequent dispersal. Details of the turbulence parameterization appear to be important in this process. It is concluded that, despite of all advances in numerical weather prediction, fog forecasting is still a major challeng

    Terrestrial cycling of (CO2)-C-13 by photosynthesis, respiration, and biomass burning in SiBCASA

    Get PDF
    We present an enhanced version of the SiBCASA terrestrial biosphere model that is extended with (a) biomass burning emissions from the SiBCASA carbon pools using remotely sensed burned area from the Global Fire Emissions Database (GFED), (b) an isotopic discrimination scheme that calculates 13C signatures of photosynthesis and autotrophic respiration, and (c) a separate set of 13C pools to carry isotope ratios into heterotrophic respiration. We quantify in this study the terrestrial exchange of CO2 and 13CO2 as a function of environmental changes in humidity and biomass burning. The implementation of biomass burning yields similar fluxes as CASA-GFED both in magnitude and spatial patterns. The implementation of isotope exchange gives a global mean discrimination value of 15.2‰, ranges between 4 and 20‰ depending on the photosynthetic pathway in the plant, and compares favorably (annually and seasonally) with other published values. Similarly, the isotopic disequilibrium is similar to other studies that include a small effect of biomass burning as it shortens the turnover of carbon. In comparison to measurements, a newly modified starch/sugar storage pool propagates the isotopic discrimination anomalies to respiration much better. In addition, the amplitude of the drought response by SiBCASA is lower than suggested by the measured isotope ratios. We show that a slight increase in the stomatal closure for large vapor pressure deficit would amplify the respired isotope ratio variability. Our study highlights the importance of isotope ratio observations of 13C to assess and improve biochemical models like SiBCASA, especially with regard to the allocation and turnover of carbon and the responses to drought
    corecore