10 research outputs found

    Older people’s experiences of mobility and mood in an urban environment : A mixed methods approach using electroencephalography (EEG) and interviews

    Get PDF
    There are concerns about mental wellbeing in later life in older people as the global population becomes older and more urbanised. Mobility in the built environment has a role to play in improving quality of life and wellbeing, as it facilitates independence and social interaction. Recent studies using neuroimaging methods in environmental psychology research have shown that different types of urban environments may be associated with distinctive patterns of brain activity, suggesting that we interact differently with varying environments. This paper reports on research that explores older people’s responses to urban places and their mobility in and around the built environment. The project aim was to understand how older people experience different urban environments using a mixed methods approach including electroencephalography (EEG), self-reported measures, and interview results. We found that older participants experience changing levels of “excitement”, “engagement” and “frustration” (as interpreted by proprietary EEG software) whilst walking between a busy built urban environment and an urban green space environment. These changes were further reflected in the qualitative themes that emerged from transcribed interviews undertaken one week post-walk. There has been no research to date that has directly assessed neural responses to an urban environment combined with qualitative interview analysis. A synergy of methods offers a deeper understanding of the changing moods of older people across time whilst walking in city settings

    Formulation development and characterization of cellulose acetate nitrate based propellants for improved insensitive munitions properties

    Get PDF
    AbstractCellulose acetate nitrate (CAN) was used as an insensitive energetic binder to improve the insensitive munitions (IM) properties of gun propellants to replace the M1 propellant used in 105 mm artillery charges. CAN contains the energetic nitro groups found in nitrocellulose (NC), but also acetyl functionalities, which lowered the polymer's sensitivity to heat and shock, and therefore improved its IM properties relative to NC. The formulation, development and small-scale characterization testing of several CAN-based propellants were done. The formulations, using insensitive energetic solid fillers and high-nitrogen modifiers in place of nitramine were completed. The small scale characterization testing, such as closed bomb testing, small scale sensitivity, thermal stability, and chemical compatibility were done. The mechanical response of the propellants under high-rate uni-axial compression at, hot, cold, and ambient temperatures were also completed. Critical diameter testing, hot fragment conductive ignition (HFCI) tests were done to evaluate the propellants' responses to thermal and shock stimuli. Utilizing the propellant chemical composition, theoretical predictions of erosivity were completed. All the small scale test results were utilized to down-select the promising CAN based formulations for large scale demonstration testing such as the ballistic performance and fragment impact testing in the 105 mm M67 artillery charge configurations. The test results completed in the small and large scale testing are discussed

    TriTrypDB: a functional genomic resource for the Trypanosomatidae

    Get PDF
    TriTrypDB (http://tritrypdb.org) is an integrated database providing access to genome-scale datasets for kinetoplastid parasites, and supporting a variety of complex queries driven by research and development needs. TriTrypDB is a collaborative project, utilizing the GUS/WDK computational infrastructure developed by the Eukaryotic Pathogen Bioinformatics Resource Center (EuPathDB.org) to integrate genome annotation and analyses from GeneDB and elsewhere with a wide variety of functional genomics datasets made available by members of the global research community, often pre-publication. Currently, TriTrypDB integrates datasets from Leishmania braziliensis, L. infantum, L. major, L. tarentolae, Trypanosoma brucei and T. cruzi. Users may examine individual genes or chromosomal spans in their genomic context, including syntenic alignments with other kinetoplastid organisms. Data within TriTrypDB can be interrogated utilizing a sophisticated search strategy system that enables a user to construct complex queries combining multiple data types. All search strategies are stored, allowing future access and integrated searches. ‘User Comments’ may be added to any gene page, enhancing available annotation; such comments become immediately searchable via the text search, and are forwarded to curators for incorporation into the reference annotation when appropriate

    Investment dynamics in Italy: financing constraints, demand and uncertainty / Dinamica degli investimenti in Italia: razionamento del credito, domanda e incertezza

    No full text
    In this paper we describe the investment behaviour of manufacturing firms in Italy between 1995 and 2013 and we investigate the most important factors leading to the decline in investment since 2008. We estimate an error correction model for investment using information on firms' demand expectations, uncertainty, and credit constraints, based on the Bank of Italy’s Survey of Industrial and Service Firms. Our results suggest that the fall in the expected growth rate of real sales played an important role in quantitative terms, and that the 2008 demand shock may explain a long period of weak investment. We also find that credit constraints have a significant impact at the firm level, but less so in aggregate terms. Finally higher uncertainty does not seem to have played a significant role in explaining investment dynamics during the crisis

    Synthesis of the Central Portion of Cycloviracin

    No full text

    Transforming knowledge systems for life on Earth : Visions of future systems and how to get there

    Get PDF
    Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.Peer reviewe

    Transforming knowledge systems for life on Earth: Visions of future systems and how to get there

    No full text
    Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent
    corecore