659 research outputs found
Maximum Parsimony Phylogenetic Inference Using Simulated Annealing
International audienc
A Bottom-Up Implementation of Path-Relinking for Phylogenetic Reconstruction Applied to Maximum Parsimony
In this article we describe a bottom-up implementation of Path-Relinking for Phylogenetic Trees in the context of the resolution of the Maximum Parsimony problem with Fitch optimality criterion. This bottom-up implementation is compared to two versions of an existing top-down implementation. We show that our implementation is more efficient, more interesting to compare trees and to give an estimation of the distance between two trees in terms of the number of transformation
Inoculum sources and Preservation in Soils of Phytophthora parasitica from Cherry Tomato in Continental Crop Areas in Southeast Spain
Inoculum sources and Preservation in Soils of Phytophthora parasitica from Cherry Tomato in Continental Crop Areas in Southeast Spai
The Endogenous Th17 Response in NO<inf>2</inf>-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer
Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. © 2013 Martin et al
Evaluation of Glycine max mRNA clusters
BACKGROUND: Clustering the ESTs from a large dataset representing a single species is a convenient starting point for a number of investigations into gene discovery, genome evolution, expression patterns, and alternatively spliced transcripts. Several methods have been developed to accomplish this, the most widely available being UniGene, a public domain collection of gene-oriented clusters for over 45 different species created and maintained by NCBI. The goal is for each cluster to represent a unique gene, but currently it is not known how closely the overall results represent that reality. UniGene's build procedure begins with initial mRNA clusters before joining ESTs. UniGene's results for soybean indicate a significant amount of redundancy among some sequences reported to be unique mRNAs. To establish a valid non-redundant known gene set for Glycine max we applied our algorithm to the clustering of only mRNA sequences. The mRNA dataset was run through the algorithm using two different matching stringencies. The resulting cluster compositions were compared to each other and to UniGene. Clusters exhibiting differences among the three methods were analyzed by 1) nucleotide and amino acid alignment and 2) submitting authors conclusions to determine whether members of a single cluster represented the same gene or not. RESULTS: Of the 12 clusters that were examined closely most contained examples of sequences that did not belong in the same cluster. However, neither the two stringencies of PECT nor UniGene had a significantly greater record of accuracy in placing paralogs into separate clusters. CONCLUSION: Our results reveal that, although each method produces some errors, using multiple stringencies for matching or a sequential hierarchical method of increasing stringencies can provide more reliable results and therefore allow greater confidence in the vast majority of clusters that contain only ESTs and no mRNA sequences
Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions
At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.Peer reviewe
Measurement of Z(0)-boson production at large rapidities in Pb-Pb collisions at root s(NN)=5.02 TeV
The production of Z(0) bosons at large rapidities in Pb-Pb collisions at root s(NN) = 5.02 TeV is reported. Z(0) candidates are reconstructed in the dimuon decay channel (Z(0) -> mu(+) mu(-)), based on muons selected with pseudo-rapidity -4.0 20 GeV/c. The invariant yield and the nuclear modification factor, RAA, are presented as a function of rapidity and collision centrality. The value of R-AA for the 0-20% central Pb-Pb collisions is 0.67 +/- 0.11(stat.) +/- 0.03 (syst.) f 0.06(corr. syst.), exhibiting a deviation of 2.6 sigma from unity. The results are well-described by calculations that include nuclear modifications of the parton distribution functions, while the predictions using vacuum PDFs deviate from data by 2.3 sigma in the 0-90% centrality class and by 3 sigma in the 0-20% central collisions. (C) 2018 The Author(s). Published by Elsevier B.V.Peer reviewe
Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC
Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe
Longitudinal asymmetry and its effect on pseudorapidity distributions in Pb-Pb collisions at root s(NN)=2.76 TeV
First results on the longitudinal asymmetry and its effect on the pseudorapidity distributions in Pb-Pb collisions at root s(NN) = 2.76 TeV at the Large Hadron Collider are obtained with the ALICE detector. The longitudinal asymmetry arises because of an unequal number of participating nucleons from the two colliding nuclei, and is estimated for each event by measuring the energy in the forward neutron-Zero-Degree-Calorimeters (ZNs). The effect of the longitudinal asymmetry is measured on the pseudorapidity distributions of charged particles in the regions vertical bar eta vertical bar < 0.9, 2.8 < eta < 5.1 and -3.7 < eta < -1.7 by taking the ratio of the pseudorapidity distributions from events corresponding to different regions of asymmetry. The coefficients of a polynomial fit to the ratio characterise the effect of the asymmetry. A Monte Carlo simulation using a Glauber model for the colliding nuclei is tuned to reproduce the spectrum in the ZNs and provides a relation between the measurable longitudinal asymmetry and the shift in the rapidity (y(0)) of the participant zone formed by the unequal number of participating nucleons. The dependence of the coefficient of the linear term in the polynomial expansion, c(1), on the mean value of y(0) is investigated.Peer reviewe
- …