13 research outputs found

    High-Mobility Group Box-1 Protein and β-Amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via Receptor for Advanced Glycation Endproducts/Nuclear Factor-kB axis: Relevance for Alzheimer’s disease.

    Get PDF
    Dysregulated hippocampal neurogenesis has been associated with neurodegenerative disorders, including Alzheimer's disease (AD), in which it may potentially represent an auto-reparatory mechanism that could counteract neuronal loss and cognitive impairment. We evaluated hippocampal neurogenesis in TgCRND8 mice and reported that, at 32 weeks of age, corresponding to an advanced AD-like neuropathology stage, increased numbers of proliferating cells, doublecortin-expressing progenitors/neuroblasts, and early postmitotic calretinin-expressing neurons were present compared with wild-type (WT) littermates. When hippocampal neural progenitor cells (NPCs) were isolated from TgCRND8 mice, we demonstrated that (1) their neurogenic potential was higher compared with WT NPCs; (2) medium conditioned by TgCRND8 NPC promoted neuronal differentiation of WT NPCs; and (3) the proneurogenic effect of TgCRND8-conditioned medium was counteracted by blockade of the receptor for advanced glycation end products (RAGE)/nuclear factor-\u3baB (NF-\u3baB) axis. Furthermore, we showed that \u3b2-amyloid 1-42 (A\u3b21-42) oligomers, but not monomers and fibrils, and the alarmin high-mobility group box-1 protein (HMGB-1) could promote neuronal differentiation of NPCs via activation of the RAGE/NF-\u3baB axis. Altogether, these data suggest that, in AD brain, an endogenous proneurogenic response could be potentially triggered and involve signals (A\u3b21-42 oligomers and HMGB-1) and pathways (RAGE/NF-\u3baB activation) that also contribute to neuroinflammation/neurotoxicity. A more detailed analysis confirmed no significant increase of new mature neurons in hippocampi of TgCRND8 compared with WT mice, suggesting reduced survival and/or integration of newborn neurons. Therapeutic strategies in AD should ideally combine the ability of sustaining hippocampal neurogenesis as well as of counteracting an hostile brain microenvironment so to promote survival of vulnerable cell populations, including adult generated neurons

    The noradrenergic component in tapentadol action counteracts \u3bc-opioid receptor-mediated adverse effects on adult neurogenesis

    Get PDF
    Opiates were the first drugs shown to negatively impact neurogenesis in the adult mammalian hippocampus. Literature data also suggest that norepinephrine is a positive modulator of hippocampal neurogenesis in vitro and in vivo. On the basis of these observations, we investigated whether tapentadol, a novel central analgesic combining \u3bc-opioid receptor (MOR) agonism with norepinephrine reuptake inhibition (NRI), may produce less inhibition of hippocampal neurogenesis compared with morphine. When tested in vitro, morphine inhibited neuronal differentiation, neurite outgrowth, and survival of adult mouse hippocampal neural progenitors and their progeny, via MOR interaction. By contrast, tapentadol was devoid of these adverse effects on cell survival and reduced neurite outgrowth and the number of newly generated neurons only at nanomolar concentrations where the MOR component is predominant. On the contrary, at higher (micromolar) concentrations, tapentadol elicited proneurogenic and antiapoptotic effects via activation of \u3b22 and \u3b12 adrenergic receptors, respectively. Altogether, these data suggest that the noradrenergic component in tapentadol has the potential to counteract the adverse MOR-mediated effects on hippocampal neurogenesis. As a proof of concept, we showed that reboxetine, an NRI antidepressant, counteracted both antineurogenic and apoptotic effects of morphine in vitro. In line with these observations, chronic tapentadol treatment did not negatively affect hippocampal neurogenesis in vivo. In light of the increasing long-term use of opiates in chronic pain, in principle, the tapentadol combined mechanism of action may result in less or no reduction in adult neurogenesis compared with classic opiates

    Guideline for Care of Patients with the Diagnoses of Craniosynostosis: Working Group on Craniosynostosis

    Get PDF
    This guideline for care of children with craniosynostosis was developed by a national working group with representatives of 11 matrix societies of specialties and the national patients' society. All medical aspects of care for nonsyndromic and syndromic craniosynostosis are included, as well as the social and psychologic impact for the patient and their parents. Managerial aspects are incorporated as well, such as organizing a timely referral to the craniofacial center, requirements for a dedicated craniofacial center, and centralization of this specialized care. The conclusions and recommendations within this document are founded on the available literature, with a grading of the level of evidence, thereby highlighting the areas of care that are in need of high-quality research. The development of this guideline was made possible by an educational grant of the Dutch Order of Medical Specialists. The development of this guideline was supported by an educational grant of the Dutch Order of Medical Specialists

    Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System

    No full text
    : Glial cells (astrocytes, oligodendrocytes, and microglia) are emerging as key players in several physiological and pathological processes of the central nervous system (CNS). Astrocytes and oligodendrocytes are not only supportive cells that release trophic factors or regulate energy metabolism, but they also actively modulate critical neuronal processes and functions in the tripartite synapse. Microglia are defined as CNS-resident cells that provide immune surveillance; however, they also actively contribute to shaping the neuronal microenvironment by scavenging cell debris or regulating synaptogenesis and pruning. Given the many interconnected processes coordinated by glial cells, it is not surprising that both acute and chronic CNS insults not only cause neuronal damage but also trigger complex multifaceted responses, including neuroinflammation, which can critically contribute to the disease progression and worsening of symptoms in several neurodegenerative diseases. Overall, this makes glial cells excellent candidates for targeted therapies to treat CNS disorders. In recent years, the application of gene editing technologies has redefined therapeutic strategies to treat genetic and age-related neurological diseases. In this review, we discuss the advantages and limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based gene editing in the treatment of neurodegenerative disorders, focusing on the development of viral- and nanoparticle-based delivery methods for in vivo glial cell targeting

    \u3b12\u3b4 Ligands Act as Positive Modulators of Adult Hippocampal Neurogenesis and Prevent Depression-Like Behavior Induced by Chronic Restraint Stress

    No full text
    Although the role of adult hippocampal neurogenesis remains to be fully elucidated, several studies suggested that the process is involved in cognitive and emotional functions and is deregulated in various neuropsychiatric disorders, including major depression. Several psychoactive drugs, including antidepressants, can modulate adult neurogenesis. Here we show for the first time that the \u3b12\u3b4 ligands gabapentin [1-(aminomethyl)cyclohexaneacetic acid] and pregabalin (PGB) [(S)-(+)-3-isobutyl-GABA or (S)-3-(aminomethyl)-5-methylhexanoic acid] can produce concentration-dependent increases in the numbers of newborn mature and immature neurons generated in vitro from adult hippocampal neural progenitor cells and, in parallel, a decrease in the number of undifferentiated precursor cells. These effects were confirmed in vivo, because significantly increased numbers of adult cell-generated neurons were observed in the hippocampal region of mice receiving prolonged treatment with PGB (10 mg/kg i.p. for 21 days), compared with vehicle-treated mice. We demonstrated that PGB administration prevented the appearance of depression-like behaviors induced by chronic restraint stress and, in parallel, promoted hippocampal neurogenesis in adult stressed mice. Finally, we provided data suggesting involvement of the \u3b12\u3b41 subunit and the nuclear factor-\u3baB signaling pathway in drug-mediated proneurogenic effects. The new pharmacological activities of \u3b12\u3b4 ligands may help explain their therapeutic activity as supplemental therapy for major depression and depressive symptoms in post-traumatic stress disorder and generalized anxiety disorders. These data contribute to the identification of novel molecular pathways that may represent potential targets for pharmacological modulation in depression

    GATA Factor-Mediated Gene Regulation in Human Erythropoiesis

    Get PDF
    International audienceErythroid commitment and differentiation are regulated by the coordinated action of a host of transcription factors, including GATA2 and GATA1. Here, we explored GATA-mediated transcriptional regulation through the integrative analysis of gene expression, chromatin modifications, and GATA factors' binding in human multipotent hematopoietic stem/progenitor cells, early erythroid progenitors, and late precursors. A progressive loss of H3K27 acetylation and a diminished usage of active enhancers and super-enhancers were observed during erythroid commitment and differentiation. GATA factors mediate transcriptional changes through a stage-specific interplay with regulatory elements: GATA1 binds different sets of regulatory elements in erythroid progenitors and precursors and controls the transcription of distinct genes during commitment and differentiation. Importantly, our results highlight a pivotal role of promoters in determining the transcriptional program activated upon erythroid differentiation. Finally, we demonstrated that GATA1 binding to a stage-specific super-enhancer sustains the expression of the KIT receptor in human erythroid progenitors

    Pervasive supply of therapeutic lysosomal enzymes in the CNS of normal and Krabbe-affected non-human primates by intracerebral lentiviral gene therapy.

    No full text
    Metachromatic leukodystrophy (MLD) and globoid cell leukodystrophy (GLD or Krabbe disease) are severe neurodegenerative lysosomal storage diseases (LSD) caused by arylsulfatase A (ARSA) and galactosylceramidase (GALC) deficiency, respectively. Our previous studies established lentiviral gene therapy (GT) as a rapid and effective intervention to provide pervasive supply of therapeutic lysosomal enzymes in CNS tissues of MLD and GLD mice. Here, we investigated whether this strategy is similarly effective in juvenile non-human primates (NHP). To provide proof of principle for tolerability and biological efficacy of the strategy, we established a comprehensive study in normal NHP delivering a clinically relevant lentiviral vector encoding for the human ARSA transgene. Then, we injected a lentiviral vector coding for the human GALC transgene in Krabbe-affected rhesus macaques, evaluating for the first time the therapeutic potential of lentiviral GT in this unique LSD model. We showed favorable safety profile and consistent pattern of LV transduction and enzyme biodistribution in the two models, supporting the robustness of the proposed GT platform. We documented moderate inflammation at the injection sites, mild immune response to vector particles in few treated animals, no indication of immune response against transgenic products, and no molecular evidence of insertional genotoxicity. Efficient gene transfer in neurons, astrocytes, and oligodendrocytes close to the injection sites resulted in robust production and extensive spreading of transgenic enzymes in the whole CNS and in CSF, leading to supraphysiological ARSA activity in normal NHP and close to physiological GALC activity in the Krabbe NHP, in which biological efficacy was associated with preliminary indication of therapeutic benefit. These results support the rationale for the clinical translation of intracerebral lentiviral GT to address CNS pathology in MLD, GLD, and other neurodegenerative LSD
    corecore