66 research outputs found

    Value of uncertain streamflow observations for hydrological modelling

    Get PDF
    Previous studies have shown that hydrological models can be parameterised using a limited number of streamflow measurements. Citizen science projects can collect such data for otherwise ungauged catchments but an important question is whether these observations are informative given that these streamflow estimates will be uncertain. We assess the value of inaccurate streamflow estimates for calibration of a simple bucket-type runoff model for six Swiss catchments. We pretended that only a few observations were available and that these were affected by different levels of inaccuracy. The level of inaccuracy was based on a log-normal error distribution that was fitted to streamflow estimates of 136 citizens for medium-sized streams. Two additional levels of inaccuracy, for which the standard deviation of the error distribution was divided by 2 and 4, were used as well. Based on these error distributions, random errors were added to the measured hourly streamflow data. New time series with different temporal resolutions were created from these synthetic streamflow time series. These included scenarios with one observation each week or month, as well as scenarios that are more realistic for crowdsourced data that generally have an irregular distribution of data points throughout the year, or focus on a particular season. The model was then calibrated for the six catchments using the synthetic time series for a dry, an average and a wet year. The performance of the calibrated models was evaluated based on the measured hourly streamflow time series. The results indicate that streamflow estimates from untrained citizens are not informative for model calibration. However, if the errors can be reduced, the estimates are informative and useful for model calibration. As expected, the model performance increased when the number of observations used for calibration increased. The model performance was also better when the observations were more evenly distributed throughout the year. This study indicates that uncertain streamflow estimates can be useful for model calibration but that the estimates by citizen scientists need to be improved by training or more advanced data filtering before they are useful for model calibration.</p

    A monoclonal antibody against kininogen reduces inflammation in the HLA-B27 transgenic rat

    Get PDF
    The human leukocyte antigen B27 (HLA-B27) transgenic rat is a model of human inflammatory bowel disease, rheumatoid arthritis and psoriasis. Studies of chronic inflammation in other rat models have demonstrated activation of the kallikrein–kinin system as well as modulation by a plasma kallikrein inhibitor initiated before the onset of clinicopathologic changes or a deficiency in high-molecular-mass kininogen. Here we study the effects of monoclonal antibody C11C1, an antibody against high-molecular-mass kininogen that inhibits the binding of high-molecular-mass kininogen to leukocytes and endothelial cells in the HLA-B27 rat, which was administered after the onset of the inflammatory changes. Thrice-weekly intraperitoneal injections of monoclonal antibody C11C1 or isotype IgG(1 )were given to male 23-week-old rats for 16 days. Stool character as a measure of intestinal inflammation, and the rear limbs for clinical signs of arthritis (tarsal joint swelling and erythema) were scored daily. The animals were killed and the histology sections were assigned a numerical score for colonic inflammation, synovitis, and cartilage damage. Administration of monoclonal C11C1 rapidly decreased the clinical scores of pre-existing inflammatory bowel disease (P < 0.005) and arthritis (P < 0.001). Histological analyses confirmed significant reductions in colonic lesions (P = 0.004) and synovitis (P = 0.009). Decreased concentrations of plasma prekallikrein and high-molecular-mass kininogen were found, providing evidence of activation of the kallikrein–kinin system. The levels of these biomarkers were reversed by monoclonal antibody C11C1, which may have therapeutic potential in human inflammatory bowel disease and arthritis

    Climatic predictors of species distributions neglect biophysiologically meaningful variables

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this record.Aim: Species distribution models (SDMs) have played a pivotal role in predicting how species might respond to climate change. To generate reliable and realistic predictions from these models requires the use of climate variables that adequately capture physiological responses of species to climate and therefore provide a proximal link between climate and their distributions. Here, we examine whether the climate variables used in plant SDMs are different from those known to influence directly plant physiology. Location: Global. Methods: We carry out an extensive, systematic review of the climate variables used to model the distributions of plant species and provide comparison to the climate variables identified as important in the plant physiology literature. We calculate the top ten SDM and physiology variables at 2.5 degree spatial resolution for the globe and use principal component analyses and multiple regression to assess similarity between the climatic variation described by both variable sets. Results: We find that the most commonly used SDM variables do not reflect the most important physiological variables and differ in two main ways: (i) SDM variables rely on seasonal or annual rainfall as simple proxies of water available to plants and neglect more direct measures such as soil water content; and (ii) SDM variables are typically averaged across seasons or years and overlook the importance of climatic events within the critical growth period of plants. We identify notable differences in their spatial gradients globally and show where distal variables may be less reliable proxies for the variables to which species are known to respond. Main conclusions: There is a growing need for the development of accessible, fine-resolution global climate surfaces of physiological variables. This would provide a means to improve the reliability of future range predictions from SDMs and support efforts to conserve biodiversity in a changing climate

    Global transpiration data from sap flow measurements: The SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80% of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50% of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56% of the datasets. Many datasets contain data for species that make up 90% or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr"R package-designed to access, visualize, and process SAPFLUXNET data-is available from CRAN. © 2021 Rafael Poyatos et al.This research was supported by the Minis-terio de Economía y Competitividad (grant no. CGL2014-55883-JIN), the Ministerio de Ciencia e Innovación (grant no. RTI2018-095297-J-I00), the Ministerio de Ciencia e Innovación (grant no. CAS16/00207), the Agència de Gestió d’Ajuts Universitaris i de Recerca (grant no. SGR1001), the Alexander von Humboldt-Stiftung (Humboldt Research Fellowship for Experienced Researchers (RP)), and the Institució Catalana de Recerca i Estudis Avançats (Academia Award (JMV)). Víctor Flo was supported by the doctoral fellowship FPU15/03939 (MECD, Spain)

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe

    Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016

    Get PDF

    Institutional arrangements in the Shepparton Irrigation Region, Victoria, Australia

    No full text
    Water managementConjunctive useGroundwaterSurface waterEnvironmental sustainabilityLand useIrrigation practicesWater tableWater useWater qualityWater costsEconomic aspectsLegislationOrganizationsInstitutionsCatchment areasWater allocationWater transferLocal governmentFarmers' associationsRiver basinsSoil salinitySalinity controlSubsurface drainageSocial participation

    A catalogue of the representative European intermittent rivers

    No full text
    International audienceWithin the SMIRES COST Action (Science and Management of Intermittent Rivers & Ephemeral Streams, www.smires.eu), examples of intermittent rivers across Europe were collected, including gauged catchments with both natural and highly influenced river flow regimes. The examples will be published in a catalogue to give a good overview of the variety of intermittent streams in Europe. Information on the gauged intermittent rivers is summarised in a two-page template: The first page of the template describes the main characteristics of the catchments (land-use, geology, climate, etc.) and the river flow regime. Two panels display hydrographs and flow durations curves and a table gives metrics specific to river flow intermittence relevant for ecology. These hydrological indices have been computed by the SMIRES R package (https://homepage.boku.ac.at/h0540352/smires/framework.html) applied to daily discharge data. The second page of the template is dedicated to the description and reasons for intermittence. A short description about the spatio-temporal pattern of zero-flow events (encompassing seasonal behaviour, observed long-term trends, locations with frequently observed zero-flow events along the river network, etc.). The monitoring network, including gauging stations and other types of observations (e.g. visual inspection of the flow states at different locations along the river) in the catchment, is also described. This presentation gives examples of the pages in the catalogue and a preliminary classification of intermittent rivers at the European scale
    corecore