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Abstract
Aim: Species	distribution	models	(SDMs)	have	played	a	pivotal	role	in	predicting	how	
species	might	respond	to	climate	change.	To	generate	reliable	and	realistic	predic‐
tions	from	these	models	requires	the	use	of	climate	variables	that	adequately	capture	
physiological	responses	of	species	to	climate	and	therefore	provide	a	proximal	 link	
between	climate	and	their	distributions.	Here,	we	examine	whether	the	climate	vari‐
ables	used	in	plant	SDMs	are	different	from	those	known	to	influence	directly	plant	
physiology.
Location: Global.
Methods: We	carry	out	an	extensive,	systematic	review	of	the	climate	variables	used	
to	model	 the	distributions	of	plant	 species	and	provide	comparison	 to	 the	climate	
variables	identified	as	important	in	the	plant	physiology	literature.	We	calculate	the	
top	10	SDM	and	physiology	variables	at	2.5°	spatial	resolution	for	the	globe	and	use	
principal	component	analyses	and	multiple	regression	to	assess	similarity	between	
the	climatic	variation	described	by	both	variable	sets.
Results: We	 find	 that	 the	most	 commonly	 used	SDM	variables	 do	not	 reflect	 the	
most	important	physiological	variables	and	differ	in	two	main	ways:	(a)	SDM	variables	
rely	on	seasonal	or	annual	rainfall	as	simple	proxies	of	water	available	to	plants	and	
neglect	more	direct	measures	such	as	soil	water	content;	and	(b)	SDM	variables	are	
typically	averaged	across	seasons	or	years	and	overlook	the	importance	of	climatic	
events	within	the	critical	growth	period	of	plants.	We	identify	notable	differences	in	
their	spatial	gradients	globally	and	show	where	distal	variables	may	be	less	reliable	
proxies	for	the	variables	to	which	species	are	known	to	respond.
Main conclusions: There	is	a	growing	need	for	the	development	of	accessible,	fine‐
resolution	 global	 climate	 surfaces	 of	 physiological	 variables.	 This	would	 provide	 a	
means	to	improve	the	reliability	of	future	range	predictions	from	SDMs	and	support	
efforts	to	conserve	biodiversity	in	a	changing	climate.
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1  | INTRODUC TION

Over	 the	 last	20	years,	 species	distribution	models	 (SDMs)	have	
become	one	of	the	most	widely	used	methods	for	predicting	how	
species	will	respond	to	global	environmental	change.	A	search	in	
Web	of	Science	 (May	2018)	 for	articles	containing	both	 “species	
distribution	models”	and	“climate	change”,	for	example,	gave	over	
7,800	returns.	Studies	that	use	SDMs,	or	develop	tools	for	doing	
so	 are	 amongst	 the	most	 highly	 cited	 in	 ecology	 and	 conserva‐
tion	(e.g.,	Elith	et	al.,	2006	[3,524	citations];	Guisan	&	Zimmerman,	
2000	[3,479];	Phillips,	Anderson,	&	Schapire,	2006	[4,953];	Thomas	
et	al.,	2004	[3,271]—Web	of	Science	Core	Collection,	May	2018).	
Moreover,	results	from	SDMs	have	shaped	21st	century	conserva‐
tion	policy,	highlighting	that	regions	with	favourable	climates	will	
soon	lie	beyond	the	natural	limits	of	colonization	of	many	current	
species	 distributions,	 and	 hence,	 that	 the	 redesign	 of	 protected	
area	networks	or	species	translocations	may	be	needed	(Guisan	&	
Thuiller,	2005).

In	 the	 context	 of	 climate	 change,	 a	 premise	 of	 SDMs	 is	 that	
climate	determines	the	natural	distribution	of	species	(Pearson	&	
Dawson,	2003).	On	this	basis,	SDMs	determine	the	statistical	re‐
lationship	between	current	species'	presence/absence	data	and	a	
set	 of	 climatic	 variables	 and	 use	 this	 to	 predict	 the	 areas	 that	 a	
species	may	 be	 able	 to	 occupy	 in	 the	 future	 (Elith	&	 Leathwick,	
2009).	 The	 climate	 variables	 selected	 to	model	 species	 distribu‐
tions	are	therefore	assumed	to	impose	constraints	on	species	such	
that	at	locations	or	times	when	climatic	conditions	are	unsuitable,	
populations	of	a	species	are	unable	to	survive	in	the	wild	(Pearson	
&	Dawson,	2003).

The	climatic	variables	used	 in	SDMs	can	be	 identified	 in	 two	
main	 ways.	 Most	 commonly,	 a	 correlative	 approach	 is	 taken,	
whereby	statistical	associations	between	species'	presence	or	ab‐
sence	data	 and	 a	 set	of	 climate	variables	 are	 initially	 tested	 and	
the	strongest	predictors	included	in	the	SDM	(Elith	&	Leathwick,	
2009).	 In	 contrast	 to	 these	 “correlative”	 SDMs,	 “mechanistic”	 or	
“physiological”	models	use	variables	for	which	experimental	work	
has	 established	 direct	 links	 to	 biological	 processes	 of	 the	 study	
species.

The	appropriate	selection	of	climate	variables	 is	fundamental	
to	the	reliability	of	SDMs	(Austin	&	Van	Neil,	2011).	If	the	variables	
selected	cannot	adequately	 represent	climatic	 factors	 that	 influ‐
ence	a	species'	distribution,	then	subsequent	range	predictions	in	
new	 locations	or	 future	 climate	 scenarios	may	be	 incorrect.	The	
degree	 to	 which	 climate	 variables	 are	 proximal	 is	 therefore	 an	
important	consideration	when	constructing	SDMs	(Austin,	2002;	
Petitpierre,	 Broennimann,	 Kueffer,	 Daehler,	 &	 Guisan,	 2017).	
Proximal	 variables	 directly	 capture	 physiological	 mechanisms	 or	
processes	of	the	study	species	and,	as	such,	are	causally	linked	to	
a	species'	distributional	response	to	climate	both	in	space	and	in	
time	(Austin,	2002,	2007).

Indirect	links	to	species'	physiology	can	be	captured	by	“distal”	
variables	 which	 may	 provide	 a	 good	 “mean	 field	 approximation”	
for	these	proximal	predictors	 (Bennie,	Wilson,	Maclean,	&	Suggitt,	

2014).	However,	 other	 factors	 in	 a	 species'	 environment,	 both	 cli‐
matic	 and	 non‐climatic,	 may	 contribute	 strongly	 to	 observed	 re‐
lationships	 between	 distal	 variables	 and	 species	 distributions	 in	
correlative	models.	The	influence	of	these	additional	factors	may	be	
unique	to	the	time	and	place	in	which	correlations	between	a	distal	
variable	and	species	distributions	are	determined	so	that	in	new	lo‐
cations	or	 future	climates	 the	ability	of	a	distal	variable	 to	predict	
species	distributions	may	weaken	or	be	 lost	 (Jackson,	Betancourt,	
Booth,	&	Gray,	2009).	Proximal	variables	are	thus	 likely	to	provide	
more	robust	estimates	of	distribution,	particularly	when	applied	to	
studies	of	species	responses	to	climate	change,	and	are	often	con‐
sidered	superior	to	distal	alternatives	when	using	SDMs	for	this	pur‐
pose	(Austin,	2002).

Despite	 recommendations	 to	 use	 proximal	 variables	 in	 SDMs	
(e.g.,	 Helmuth,	 Kingsolver,	 &	 Carrington,	 2005;	 Barbet‐Massin	 &	
Jetz,	2014),	 those	selected	are	known	often	to	neglect	physiologi‐
cal	processes	(Mod,	Scherrer,	Luoto,	&	Guisan,	2016).	By	definition,	
mechanistic	SDMs	will	use	proximal	variables	but	correlative	SDMs,	
which	remain	the	most	popular	approach	to	modelling	species	distri‐
butions	(Barry	&	Elith,	2006),	may	use	any	climate	variable	deemed	
to	correlate	sufficiently	to	species	distributions	such	that	it	can	pre‐
dict	presence	or	absence.	For	plants,	it	is	not	yet	known	how	closely	
the	 climate	 variables	 used	 most	 commonly	 in	 SDMs	 compare	 to	
those	of	known	physiological	importance.

In	 this	 study,	we	quantify	 the	use	of	 climate	 variables	 in	 SDM	
studies	of	vascular	and	non‐vascular	plants	and	provide	comparison	
to	those	identified	as	physiologically	important	in	the	plant	physiol‐
ogy	literature.	We	test	two	hypotheses:

(i)	Climate	 variables	 used	 in	 plant	 SDMs	 are	 different	 from	 those	
known	directly	to	influence	plant	physiology

(ii)	The	 spatial	 patterns	 of	 climate	 variation	described	by	 the	most	
common	SDM	variables	do	not	match	those	described	by	physio‐
logically	relevant	variables

If	both	the	SDM	variables	themselves	and	the	spatial	patterns	of	cli‐
mate	they	describe	are	different	to	physiologically	relevant	variables,	
we	may	conclude	that	the	SDM	variables	are	distal	predictors	of	spe‐
cies	distributions	and	caution	should	be	applied	when	using	these	vari‐
ables,	particularly	in	studies	of	plant	responses	to	climate	change.

We	 focus	 only	 on	 plant	 species	 to	 provide	 a	 more	 complete	
and	comparable	analysis	and	because	climate	is	widely	accepted	as	
the	most	dominant	influence	on	plant	distributions	(cf.	Box,	1981;	
Woodward,	 1987).	 Further,	 as	 primary	 producers,	 plant	 distribu‐
tions	 will	 influence	 resource	 availability	 at	 higher	 trophic	 levels,	
which	 in	 turn	 has	 important	 implications	 for	 the	 conservation	 of	
species	further	up	the	food	chain	(Hadded	et	al.,	2009).	As	SDMs	
are	 used	 routinely	 to	 assess	 species	 distributions	 in	 the	 context	
of	 climate	 change	 (Austin	 &	 Van	Niel,	 2011),	 we	 analyse	 climate	
variables	associated	directly	with	a	changing	climate	(Collins	et	al.,	
2013)	and	which	are	known	to	influence	plant	distributions	(Austin	
&	 Van	 Neil,	 2011),	 namely	 temperature	 and	 water	 availability	
(Körner	et	al.,	2016).
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While	we	acknowledge	that	factors	such	as	dispersal	and	biotic	
interactions	can	also	exert	strong	influence	on	species	distributions	
(Gallien	et	al.,	2015;	Shea	&	Chesson,	2002),	consideration	for	these	
is	beyond	the	scope	of	this	study.	We	hope	to	aid	the	effective	pa‐
rameterisation	 of	 the	 climatic	 component	 of	 SDMs,	 especially	 to	
meet	 demands	 to	 predict	 accurately	 species	 responses	 to	 climate	
change.

2  | METHODS

2.1 | Data sources

We	compiled	data	from	the	peer‐reviewed	literature	on	species	dis‐
tributions	and	physiology.	We	performed	two	literature	searches:

1.	 To	source	studies	 from	the	SDM	 literature,	we	used	 the	search	
terms	TS	=	 (bioclimatic	AND	climate	variables)	AND	TS	=	 (spe‐
cies	 distribution	OR	 niche)	 in	 ISI	Web	 of	 Science	 (http://www.
webof	knowl	edge.com).	 This	 returned	 343	 papers	 (December	
2017)	which	were	sorted	by	relevance	and	individually	assessed	
and	 selected	 for	 further	 scrutiny	 if	 the	 study:	 (a)	 examined	 the	
distribution	of	at	 least	one	plant	species	using	climatic	variables	
and	SDM	techniques;	 (b)	was	not	a	 literature	 review	or	general	
discussion	 paper;	 and	 (c)	 did	 not	 as	 a	 primary	 aim	 compare	
how	 different	 variable	 types	 affect	modelling	 results.	Methods	
of	 the	 150	 qualifying	 studies	 were	 inspected	 to	 determine	
the	 climate	 variables	 used	 in	 each	 case.	 Studies	 examining	
the	 distributions	 of	 both	 plant	 and	 non‐plant	 species	 were	
retained,	 as	 there	 were	 no	 instances	 in	 which	 plant	 species	
were	modelled	using	different	environmental	variables	 to	other	
species.	We	 documented	 the	 full	 set	 of	 climate	 variables	 used	
in	 the	 final	 models	 and	 not	 just	 those	 found	 to	 affect	 species	
distributions.	 Herein,	 we	 refer	 to	 any	 variables	 sourced	 from	
the	 SDM	 literature	 as	 the	 “SDM”	 or	 “bioclimatic”	 variables.

2.	 To	source	studies	from	the	physiological	literature,	we	performed	
a	 systematic	 search	 in	 ISI	 Web	 of	 Science	 (http://www.webof	
knowl	edge.com)	using	the	following	search	criteria:	“experiment	
AND	plant	AND	physiological	AND	response	AND	climate.”	This	
returned	 245	 papers	 (January	 2019)	 which	 we	 sorted	 by	 rele‐
vance.	We	included	the	first	150	studies	identified	in	this	way	to	
match	the	sample	size	of	the	species	distribution	studies.	Further	
details	of	the	physiology	literature	are	provided	in	Appendix	S2.	
Each	study	was	inspected,	and	all	climate	variables	found	signifi‐
cantly	or	 insignificantly	 to	affect	plant	physiology	 (e.g.,	 growth,	
reproduction,	 survival)	 were	 recorded.	 In	 cases	 where	 experi‐
mental	treatments	were	delivered	over	unspecified	phenological	
stages,	but	occurred	when	the	otherwise	unmanipulated	environ‐
mental	variables	were	conducive	to	plant	growth,	we	defined	the	
temporal	scale	of	the	final	variable	as	“during	the	growing	season.”	
We	 grouped	 soil	 water	 content	 into	 a	 single	 variable	 (for	 each	
unique	time	period	of	measurement),	 regardless	of	the	way	this	
was	determined	in	the	study	(e.g.,	gravimetrically,	volumetrically)	
as	individually	the	variables	would	be	very	highly	correlated	and	

would	not	provide	meaningful	additions	to	the	physiology	 list	 if	
separated.	There	were	no	other	cases	where	the	grouping	of	vari‐
ables	was	necessary.	Herein,	we	refer	to	any	variables	identified	
from	the	physiology	search	as	the	“physiology”	or	“physiological”	
variables.	Full	details	of	the	physiology	variables	can	be	found	in	
the	Appendix	S1.	A	variable	could	be	classed	as	both	an	“SDM”	
and	a	“physiology”	variable	if	it	was	used	to	model	the	distribution	
of	a	plant	in	one	of	the	SDM	studies	and	also	found	to	be	physi‐
ologically	relevant	in	a	study	from	the	plant	physiology	literature.

2.2 | Analysis

To	identify	the	10	most	frequently	used	variables	from	each	of	the	
two	searches,	we	summed	the	number	of	times	each	unique	climate	
variable	was	used	in	their	respective	literature	and	sorted	the	results	
from	highest	 to	 lowest.	 Final	 rankings	 of	 the	 physiology	 variables	
were	 calculated	 by	 dividing	 these	 frequencies	 (significant)	 by	 the	
number	of	times	each	variable	was	used	(significant	+	insignificant)	
in	the	150	papers	reviewed.	This	accounts	for	ease	of	manipulation	
of	these	variables	within	an	experimental	setting,	but	a	further	limi‐
tation	is	that	our	literature	search	was	non‐exhaustive	and	variable	
rankings	may	therefore	be	sensitive	to	studies	selected.	We	there‐
fore	performed	a	post	hoc	sampling	with	replacement	procedure	to	
test	 for	 the	 robustness	 of	 variable	 ranks.	We	 generated	 999	 new	
samples	and	tested	for	concordance	between	the	ranking	order	of	
the	top	10	variables	in	each	of	the	new	samples	and	our	original	top	
10	physiology	variables	using	Kendal's	W	test	(Tate	&	Clelland,	1957).

Studies	modelling	distributions	of	 a	 greater	number	of	 species	
may	use	more	general	climate	variables,	so	we	investigated	whether	
use	of	the	top	10	SDM	variables	was	influenced	by	species	number,	
using	a	generalized	linear	model	(GLM).	As	variable	use	was	repre‐
sented	as	either	0	(false)	or	1	(true),	a	binomial	error	distribution	and	
logit	 link	 function	were	 used.	 Species	 number	was	 logarithmically	
transformed	 to	 reduce	 heteroscedasticity.	 Eight	 studies	 were	 ex‐
cluded	from	this	analysis	as	the	species	number	was	not	stated.

To	produce	global	maps	of	climate	variation	for	the	top	10	SDM	
and	physiology	variables,	we	downloaded	 six‐hourly	data	 from	 the	
National	 Oceanic	 and	 Atmospheric	 Administration	 (NOAA)	 NCEP/
NCAR	Reanalysis	 (Kalnay	et	al.,	1996)	and	daily	data	from	the	CPC	
Unified	Precipitation	Project	gridded	global	climate	databases	(https	
://www.esrl.noaa.gov/psd/).	 These	 data	 were	 resampled	 and	 pro‐
cessed	to	construct	and	map	(averaged	over	the	period	2000–2017)	
each	of	the	top	10	SDM	and	physiology	variables	at	2.5°	resolution	
(see	Appendix	S2	for	further	details	on	data	download	and	processing	
and	Appendix	S3:	Figures	S3	and	S4,	for	global	maps	of	each	variable).

We	sought	next	to	provide	statistical	comparison	between	the	
climatic	conditions	described	by	the	SDM	and	physiology	variables.	
However,	 climate	variables	 are	often	 correlated	with	one	another,	
and	 in	 consequence,	 even	 if	 the	 variables	 are	 different,	 the	 spa‐
tial	 patterns	 of	 those	most	 frequently	 used	 in	 SDMs	may	 capture	
in	aggregate	the	spatial	patterns	of	the	physiological	variables.	We	
followed	 a	 two‐step	 process	 in	 order	 to	 compare	 the	 SDM	 and	

http://www.webofknowledge.com
http://www.webofknowledge.com
http://www.webofknowledge.com
http://www.webofknowledge.com
https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
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physiology	variables:	(a)	principal	component	analysis	(PCA)	on	both	
variable	sets;	and	 (b)	multiple	regression	analysis	of	SDM	principal	
component	 scores	 using	 scores	 from	 physiology	 principal	 compo‐
nents	(PCs)	1–3	as	predictors.

Principal	component	analysis	can	be	used	to	reduce	dimension‐
ality	in	a	dataset	and	indicate	which	variables	contain	the	most	in‐
formation	 (King	&	 Jackson,	 1999).	 Here	 it	 allows	 us	 to	 determine	
which	 aspects	 of	 climate	 variation	 are	 described	by	 the	 SDM	and	
physiology	 variables.	We	 performed	 two	 PCAs	 to	 identify	 which	
climate	variables	 contributed	most	 to	 the	overall	 variation	 in	 con‐
ditions	 described	 by	 the	 top	 10	 SDM	 and	 physiology	 variables.	
Total annual precipitation and mean annual temperature were not 
included	in	the	analyses	as	they	featured	in	both	top	10	lists	and	so	
it	was	not	necessary	to	examine	the	spatial	differences	between	the	
SDM	and	physiology	studies	for	these	variables.	Data	were	scaled	
to	account	 for	differences	 in	units	among	each	variable	set,	and	a	
scree	plot	was	used	to	determine	how	many	PCs	to	retain	from	each	
PCA	 (Appendix	 S3:	 Figure	 S2).	 For	 both	 the	 SDM	 and	 physiology	
variables,	we	retained	the	first	three	PCs.	We	analysed	the	variable	
loadings	for	PCs	1–3	for	both	variable	sets	to	determine	the	aspects	
of	climate	they	described.

It	is	not	possible	to	compare	PCs	in	a	like‐for‐like	way	between	
variable	sets.	PC1	for	the	SDM	variables,	for	example,	may	correlate	
poorly	with	PC1,	but	well	with	PC2	of	the	physiology	variables	so	
that	collectively	the	PCs	from	the	two	sets	of	variables	may	describe	
similar	 trends	 in	 global	 climate	 variation.	 To	 assess	 similarity	 be‐
tween	the	climate	variation	described	by	the	physiology	and	SDM	
variables,	we	therefore	performed	three	multiple	regression	analy‐
ses	on	scores	of	each	of	the	SDM	PCs	using	the	scores	for	the	phys‐
iology	PCs	1–3	as	predictors	(Appendix	S3:	Figure	S5).	To	determine	
the	 variance	 unexplained	 collectively	 by	 the	multiple	 regressions,	
we	calculated	the	squared	residuals	for	each	regression	and	mapped	
the	square	root	of	the	minimum	of	these	residuals,	thereby	revealing	
where	discrepancies	 in	 the	spatial	patterns	of	climate	captured	by	
the	two	sets	of	variables	were	greatest	(Figure	3).

All	 data	 analyses	 were	 conducted	 using	 the	 statistical	 pro‐
gramme	R	(R	Core	Team,	2018).

3  | RESULTS

3.1 | Climate variables

Two	hundred	and	eighty‐nine	unique	climate	variables	were	identi‐
fied	 from	 the	150	SDM	studies	 (Appendix	S1).	The	10	most	 com‐
monly	used	were	(a)	annual	mean	temperature	(98	studies);	(b)	total	
annual	precipitation	(87);	 (c)	precipitation	seasonality	(70);	 (d)	tem‐
perature	seasonality	(69);	(e)	precipitation	of	the	driest	period	(68);	
(f)	minimum	temperature	of	the	coldest	period	(66);	(g)	mean	diurnal	
range	(65);	(h)	isothermality	(63);	(i)	precipitation	of	the	coldest	quar‐
ter	(60)	and	(j)	temperature	annual	range	(60)	(Table	1).	All	the	top	10	
SDM	variables	were	from	the	standard	list	of	19	“Bioclim”	variables	
available	from	WorldClim	(Hijmans,	Cameron,	Parra,	Jones,	&	Jarvis,	
2005).	Forty‐four	 studies	 (29%)	used	 the	 full	 set	of	19	WorldClim	

variables	in	their	models	(Appendix	S3:	Figure	S1).	Ninety‐six	unique	
climate	 variables	 were	 identified	 from	 the	 150	 plant	 physiology	
studies	(Appendix	S1).	After	accounting	for	non‐significance,	the	10	
most	 commonly	 used	 variables	were	 (a)	 soil	water	 content	 during	
the	growing	season	(38);	(b)	mean	growing	season	temperature	(29);	
(c)	growing	season	precipitation	(17);	(d)	total	summer	precipitation	
(11);	(e)	total	annual	precipitation	(7);	(f)	growing	season	length	(6);	(g)	
maximum	temperature	during	the	growing	season;	(h)	mean	annual	
temperature	(5.4);	(i)	mean	summer	temperature	(5);	and	(j)	summer	
soil	water	content	(5)	(Table	2).

We	found	strong	concordance	between	variable	ranking	 in	the	
original	 and	 new	 samples	 (mean	 statistics	 for	n	 =	 999:	W	 =	 0.76,	
p	=	<0.01;	p‐value	range:	1.22	×	10−14,	1.62	×	10−1; W	statistic	range:	
0.69,	0.83).	This	supports	the	robustness	of	the	ranking	order	of	our	
physiology	variables.

Total annual precipitation and mean annual temperature were 
the	only	variables	that	featured	in	both	the	SDM	and	physiology	top	
10	lists.	Of	the	top	10	SDM	variables,	six	captured	variation	or	ex‐
tremes	of	temperature	and	four	captured	variation	or	extremes	of	
precipitation.	The	top	10	physiology	variables	were	more	diverse	in	
the	aspects	of	climate	that	they	describe	and	placed	greater	empha‐
sis	on	water	availability.	Soil	moisture	content	was	 the	most	com‐
monly	 identified	physiology	 variable	 yet	was	only	 included	 in	 one	
SDM	study.	The	timing	of	climatic	events	within	the	growing	season	
was	important	to	five	of	the	physiology	variables	but	was	not	explic‐
itly	featured	in	any	of	the	SDM	variables.

3.2 | Spatial patterns

Comparison	of	global	maps	depicting	the	mean	values	for	the	SDM	
and	physiology	variables	indicate	that	the	spatial	patterns	of	climate	
they	describe	are	dissimilar.	For	example,	global	variation	 in	grow‐
ing	season	soil	moisture	content,	 the	 top	physiology	variable,	was	
not	 matched	 by	 any	 of	 the	 SDM	 precipitation	 variables;	 growing	
season	 soil	 moisture	 content	 showed	 a	 more	 patchy	 distribution,	
particularly	 in	 the	Northern	Hemisphere,	whereas	variation	 in	 the	
SDM	precipitation	variables	generally	 radiated	out	 from	the	equa‐
tor.	 Similarly,	 temperature	 seasonality	 and	 maximum	 temperature	
during	the	growing	season,	the	variables	ranking	fourth	and	seventh	
in	 the	SDM	and	physiology	top	10,	 respectively,	showed	clear	dif‐
ferences	in	spatial	variation	despite	both	describing	temperature	in‐
dices	of	climate.	Maximum	temperature	during	the	growing	season	
captures	climatic	variation	more	 independently	of	equatorial	 influ‐
ence	than	temperature	seasonality	and	acknowledges	that	extreme	
high	temperatures	(>35	C)	will	be	detrimental	to	plant	growth.	The	
physiology	variables	appeared	to	show	greater	spatial	heterogeneity	
in	 climatic	 variation,	 particularly	 for	 the	 temperature‐related	 vari‐
ables.	The	physiology	variables	highlighted	areas	with	climates	dis‐
tinct	from	that	of	the	general	trend	in	the	surrounding	area,	such	as	
along	the	west	coast	of	South	America,	whereas	the	SDM	variable	
appeared	to	smooth	out	these	nuances.	Global	maps	of	the	top	10	
SDM	and	physiology	variables	(averaged	for	the	period	2000–2017)	
are	shown	in	Appendix	S3:	Figures	S3	and	S4.
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3.3 | Principal component analyses

The	 first	 three	components	 for	 the	SDM	and	physiology	variables	
explained	86%	and	94%	of	the	variance,	respectively	(Tables	3	and	
4).	For	the	SDM	variables,	PC1	explained	58%	of	the	variation	and	
was	most	strongly	correlated	with	temperature	seasonality	(−0.43)	
and	 temperature	annual	 range	 (−0.43).	Mean	diurnal	 range	 (−0.41)	
and	isothermality	(0.40)	also	loaded	relatively	strongly	in	opposing	
directions.	In	general,	coastal	areas	scored	higher	than	their	adjacent	
continental	space,	suggesting	that	this	PC	describes	well	the	conti‐
nentality	of	an	area	(Figure	1).	PC2	explained	an	additional	23%	of	
the	cumulative	variation	in	SDM	variables	and	was	correlated	most	
strongly	 with	 precipitation	 seasonality	 (0.66),	 precipitation	 of	 the	
driest	period	(−0.55)	and	precipitation	of	the	coldest	quarter	(−0.37).	
PC3	was	correlated	most	strongly	with	precipitation	of	the	coldest	
quarter	(−0.62),	precipitation	seasonality	(−0.51)	and	precipitation	of	
the	coldest	quarter	(0.48)	(Table	3).

For	 the	 physiology	 variables,	 PC1	 explained	67%	of	 the	 varia‐
tion	and	was	most	strongly	correlated	with	growing	season	 length	
(0.40),	growing	season	soil	moisture	 (0.39)	and	mean	growing	sea‐
son	temperature	(0.39).	PC2	explained	an	additional	24%	of	the	cu‐
mulative	 variation	 and	was	 positively	 correlated	with	 summer	 soil	

water	content	 (0.68)	and	negatively	correlated	with	mean	summer	
temperature	(−0.43).	PC3	was	most	strongly	correlated	with	growing	
season	precipitation	 (−0.54)	 and	 summer	 soil	water	 content	 (0.51)	
(Table	4).	Overall,	PC	scores	appear	to	describe	the	tropicality	of	an	
area.	Each	PC	 for	 the	physiology	variables	 captures	a	balance	be‐
tween	temperature	and	soil	moisture	variables,	rather	than	consid‐
ering	temperature	and	water	variables	more	independently	as	seen	
for	the	SDM	variables.

Figures	1	and	2	show	the	global	variation	in	climate	conditions	as	
described	by	the	first	three	PCs	for	SDM	and	physiology	variables.

Although	PCA	can	identify	which	aspects	of	climate	describe	
most	variation	in	the	raw	data,	PC	scores	are	not	directly	compa‐
rable	across	different	variable	sets.	The	minimum	residual	scores	
ranged	from	0.000024	to	1.80	 (Figure	3).	Areas	with	 the	 largest	
residual	differences	 included	parts	of	Central	Africa,	north‐east‐
ern	 South	 America	 and	 Southeast	 Asia,	 including	 the	 islands	 of	
Indonesia.	 Many	 of	 these	 areas	 experience	 tropical	 climate	 (cf.	
Geiger,	 1961;	 Kottek,	 Grieser,	 Beck,	 Rudolf,	 &	 Rubel,	 2006),	 re‐
flecting	the	differences	in	the	aspects	of	climate	described	by	the	
SDM	and	physiology	PCs;	each	SDM	PC	described	independently	
either	aspects	of	climate	related	to	precipitation	or	to	temperature,	
whereas	 all	 PCs	 for	 the	 physiology	 variables	 described	 aspects	

TA B L E  2  Summary	of	the	top	10	climate	variables	used	in	the	plant	physiology	studies,	including	variable	descriptions	and	the	temporal	
scales	of	data	required	to	calculate	each	variable

Rank Variable name Variable description
Temporal scale of data to 
calculate variable

Number of 
studies

1 Soil water content during 
growing	season

The	amount	of	water	in	the	soil	during	the	growing	sea‐
son	(including	volumetric,	fractional	and	gravimetric	
calculations)a

Dailyb 38

2 Mean	growing	season	
temperature

The	average	daily	temperature	during	the	growing	seasona Daily 29

3 Total precipitation during 
growing	season

Total	precipitation	falling	during	the	growing	seasona Dailyb 17

4 Total	summer	precipitation Total	precipitation	falling	during	the	summerc Daily 10.1	(11	
significant)

5 Total annual precipitation The	sum	of	all	precipitation	values	over	a	year Daily 7

6 Length	of	growing	season The	entire	period	(in	days)	in	which	plant	growth	can	 
theoretically	take	place	(Carter,	1998)	over	the	course	of	
1‐yeara

Dailyb 7

7 Maximum	temperature	dur‐
ing	the	growing	season

The	maximum	temperature	during	the	growing	seasona Daily 6

8 Mean	annual	temperature See	BIO1.	The	mean	of	all	weekly	mean	temperatures	over	
a year

Weekly 5.4	(7	
(significant)

9 Mean	summer	temperature The	mean	temperature	during	the	3‐month	(91‐day)	Summer	
period

Daily 5

10 Summer	soil	water	content The	average	amount	of	water	in	the	soil	during	the	3‐month	
Summer periodc

Daily 5

aFor	the	purposes	of	calculation,	we	define	growing	season	as	any	period	where	daytime	temperatures	are	>5	C	and	<35	C	and	precipitation	is	>half	
evapotranspiration	for	five	consecutive	days.	
bThe	definition	of	growing	season	used	in	this	study	requires	daily	climate	data,	but	temporal	scale	may	vary	for	other	definitions.	For	example,	if	
growing	season	is	defined	as	a	period	of	months,	monthly	average	data	may	be	sufficient;	if	growing	season	is	defined	by	date	of	snow	release,	daily	
climate	data	will	be	required.	
cDefinitions	in	original	study	may	vary,	but	explicitly	state	“summer.”	For	the	purposes	of	calculation,	we	define	summer	as	1st	June–31st	August	
(Northern	Hemisphere)	or	1st	December	to	2nd	March	(Southern	Hemisphere).	
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of	 climate	 associated	with	 tropicality	 and	 the	mutual	 availability	
of	water	 and	 temperature.	 This	 analysis	 confirmed	 that	 in	 some	
areas,	the	SDM	and	physiology	variables	capture	different	aspects	
of	climate	variation	and	this	could	have	important	implications	for	
the	reliability	of	SDM	predictions.

3.4 | Correlation with species number

Individually,	total	annual	precipitation,	mean	diurnal	range,	tempera‐
ture	 isothermality	 and	 temperature	 annual	 range	 (rankings	 2,	 7,	 8	
and	9,	respectively)	were	more	likely	to	be	used	with	an	increasing	
number	of	study	species	(GLM,	p	=	0.02,	p	=	0.02,	p	=	0.03,	p	=	0.04)	
(Table	1).	When	considered	 together,	however,	use	of	at	 least	one	
of	the	SDM	top	10	variables	was	not	found	to	be	related	to	study	
species	 number	 (GLM,	p	 =	 0.79).	 The	 likelihood	of	 one	of	 the	 top	
10	physiology	variables	being	reported	as	significant	in	the	physiol‐
ogy	literature	was	not	related	to	the	number	of	study	species	(GLM,	
p	=	0.68).

4  | DISCUSSION

4.1 | Variable selection as a predictor of plant 
distributions

The	 climate	 variables	 used	 in	 SDMs	 are	 assumed	 to	 reflect	 the	
physiological	 constraints	on	 the	 study	 species	 that	affect	where	
they	 can	 survive	 in	 the	wild	 (Kearney	&	 Porter,	 2009).	 Proximal	
variables	 represent	 a	 direct	 link	 between	 climate	 and	 physiol‐
ogy	(Austin,	2002;	Jackson	et	al.,	2009)	and	as	physiological	 lim‐
its	 are	 inherent	 traits,	 their	 influences	 on	 a	 species'	 distribution	
are	more	likely	to	be	conserved	in	time	and	space	(Austin,	2002,	
2007).	 Distal	 variables,	 however,	 correlate	 indirectly	 to	 species'	
physiology	 through	 their	 relationship	 to	 the	 proximal	 variables	

they	 replace	 (Merow	et	 al.,	 2014).	Although	distal	 variables	may	
provide	a	good	“mean	field	approximation”	for	proximal	predictors	
under	existing	climates	(Bennie	et	al.,	2014),	it	cannot	be	assumed	
that	this	relationship	will	be	conserved	in	time	and	space,	and	 in	
consequence,	 the	 use	 of	 distal	 variables	 in	 predictive	models	 is	
questionable.	 Physiological	 variables	may	 therefore	 be	more	 ro‐
bust	predictors	of	species	distributions	in	novel	climates	and	loca‐
tions	(Austin,	2002).

The	results	from	our	literature	review	affirm	our	first	hypoth‐
esis:	the	climate	variables	used	in	SDMs	are	different	from	those	
known	 directly	 to	 influence	 plant	 physiology.	Most	 notably,	 the	
top	physiology	variables	highlight	an	 important	role	of	soil	mois‐
ture	content	and	suggest	that	the	growing	season	is	a	critical	time	
period	for	climatic	influence	on	plants.	The	top	10	SDM	variables,	
however,	 are	 skewed	 towards	 the	use	of	 temperature	 indices	of	
climate,	neglect	the	influence	of	soil	water	availability	and	mostly	
capture	annual	or	seasonal	trends	rather	than	the	timing	of	climate	
events	 within	 important	 periods	 of	 plant	 growth	 and	 develop‐
ment.	In	this	way,	the	most	common	SDM	variables	are	considered	
to	be	distal	 indicators	of	plant	distributions	and	may	struggle	 to	
replicate	physiologically	relevant	aspects	of	climate	variation	(Elith	
&	Leathwick,	2009).

Lack	 of	 consideration	of	 soil	moisture	 content	 is	 an	 important	
omission	 from	 the	 top	 SDM	 variables.	 Almost	 every	 physiological	
process	 in	 plants	 is	 affected	 directly	 or	 indirectly	 by	 water	 sup‐
ply	 (Kramer	 &	 Boyer,	 1995),	 and	 soil	 water	 conditions	 have	 been	
shown	to	be	a	primary	determinant	of	small‐scale	plant	distributions	
(Engelbrecht	et	al.,	2007;	Tromp‐van	Meerveld	&	McDonnell,	2006)	
and	overall	habitat	type	(Moeslund	et	al.,	2013).	Schietti	et	al.	(2014),	
for	example,	 found	 that	82%	of	 the	variation	 in	plant	composition	
in	 Amazon	 terra	 firme	 forest	 could	 be	 explained	 by	 the	 depth	 of	

TA B L E  3  Summary	of	principal	component	analysis	for	SDM	
variables,	including	variable	loadings	for	principal	components	1–3

Variable name PC1 PC2 PC3

Precipitation	of	the	driest	
period

0.227 0.553 0.054

Precipitation	seasonality 0.013 −0.660 −0.514

Precipitation	of	the	cold‐
est	quarter

0.316 0.374 −0.617

Mean	diurnal	range −0.411 −0.041 −0.036

Isothermality 0.396 −0.019 −0.284

Temperature	seasonality −0.433 0.197 −0.185

Minimum	temperature	of	
the	coldest	period

0.384 −0.206 0.484

Temperature annual range −0.434 0.187 −0.050

Standard deviation 2.158 1.343 0.661

Proportion	of	variance 0.582 0.226 0.055

Cumulative	proportion	of	
variance

0.582 0.808 0.862

TA B L E  4  Summary	of	principal	component	analysis	for	
physiology	variables,	including	variable	loadings	for	principal	
components	1–3

Variable name PC1 PC2 PC3

Growing	season	soil	mois‐
ture content

0.393 0.264 −0.235

Growing	season	length 0.404 0.105 0.049

Mean	growing	season	
temperature

0.390 −0.235 0.351

Summer	soil	water	content −0.062 0.676 0.512

Maximum	growing	season	
temperature

0.385 −0.236 0.495

Growing	season	
precipitation

0.369 0.298 −0.540

Total	summer	precipitation 0.372 0.283 0.050

Mean	summer	temperature 0.321 −0.427 −0.133

Standard deviation 2.317 1.397 0.487

Proportion	of	variance 0.671 0.244 0.030

Cumulative	proportion	of	
variance

0.671 0.915 0.944
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F I G U R E  1  Global	maps	of	climate	variation	as	described	by	the	first	three	principal	components	(PCs)	associated	with	the	SDM	variables:	
(a)	PC1;	(b)	PC2;	(c)	PC3
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F I G U R E  2  Global	maps	of	climate	variation	as	described	by	the	first	three	principal	components	(PCs)	associated	with	the	physiology	
variables:	(a)	PC1;	(b)	PC2;	(c)	PC3
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the	water‐table,	and	diversity	in	plant	communities	from	the	South	
African	Fynbos	(Araya,	Gowing,	&	Dise,	2010)	to	English	meadows	
(Silvertown,	Dodd,	Gowing,	&	Mountford.,	1999)	has	been	attributed	
to	hydrological	niche	separation.

Precipitation	is	often	selected	as	a	distal	predictor	for	soil	mois‐
ture	(e.g.,	Austin	&	Van	Niel,	2011)	and,	indeed,	four	of	the	top	10	
SDM	variables	 related	to	precipitation.	However,	precipitation	has	
been	shown	to	be	a	poor	proxy	for	soil	moisture	conditions	(Piedallu,	
Gégout,	Perez,	&	Lebourgeois,	2013)	and	may	 therefore	 fail	 accu‐
rately	to	capture	the	amount	of	water	that	ultimately	becomes	avail‐
able	 to	 plants	 (Dilts,	Wesiberg,	Dencker,	&	Chambers,	 2015).	 The	
discrepancy	between	precipitation	and	soil	moisture	variables	may	
become	increasingly	important	at	finer	spatial	scales,	where	topog‐
raphy	 has	 greater	 influence	 on	 soil	water	 content	 (Daws,	Mullins,	
Burslem,	Paton,	&	Dalling,	2002;	Maclean,	Bennie,	Scott,	&	Wilson,	
2012)	or	 in	 transition	 zones	between	wet	and	dry	 climates	where	
evaporation	is	high	and	feedbacks	between	soil	moisture	and	precip‐
itation	occur	(Koster	et	al.,	2004).	Substituting	soil	moisture	variables	
with	precipitation	surrogates	could	therefore	threaten	the	reliability	
of	SDMs	(Weltzin	et	al.,	2003),	and	indeed,	explicitly	incorporating	
soil	moisture	predictors	 into	SDMs	 for	plants	has	been	 suggested	
as	a	way	to	increase	the	reliability	of	subsequent	range	predictions	
(e.g.,	Whitehead,	2001).

Another	feature	of	the	physiology	variables	is	that	the	growing	
season	emerges	as	a	critical	period	for	climate	influence	on	plants;	
five	of	the	top	10	physiology	variables	featured	the	growing	season,	
but	 this	was	not	explicit	 in	 any	of	 the	 top	10	SDM	variables.	This	
omission	carries	similar	issues	to	those	discussed	for	soil	moisture,	
as	without	consideration	for	this	important	period	for	plant	growth	
the	SDM	variables	may	 fail	 to	 capture	 the	aspects	of	 climate	 that	
limit	 plant	 distributions.	 For	 example,	 although	mean	 annual	 tem‐
perature	may	be	correlated	with	mean	growing	season	temperature,	

the	former	may	obscure	periods	of	high	or	low	temperatures	when	
plants	 are	 most	 sensitive	 to	 environmental	 conditions	 or	 have	
greater	 requirements	 for	warmth.	As	with	 the	use	of	precipitation	
as	a	proxy	for	soil	moisture	content,	the	use	of	distal	predictors	that	
consider	monthly	or	yearly	climate	averages	rather	than	conditions	
specifically	within	the	growing	season	period	may	have	negative	im‐
plications	for	the	reliability	of	range	predictions.

The	PCAs	highlight	that	variation	among	the	top	10	physiology	
variables	can	be	described	by	aspects	of	climate	related	to	tropical‐
ity,	particularly	the	combined	strength	of	accumulated	temperature,	
soil	moisture	content	and	precipitation	during	the	growing	season.	
Variance	among	the	SDM	variables,	however,	is	described	by	factors	
reflecting	the	variability	and	extremes	of	temperature	and	precipita‐
tion	throughout	the	year	and	could	be	considered	to	define	climate	
continentality.

The	PCA	results	suggest	that,	physiologically,	it	is	important	that	
climate	 variables	 consider	 the	 mutual	 availability	 of	 temperature	
and	water	 (i.e.,	 “better	 together”)	whereas	 the	 SDM	variables	 de‐
scribe	the	ranges	or	extremes	in	these	aspects	of	climate	(and	usu‐
ally	model	them	independently	of	each	other).	Most	plant	phyla	are	
known	to	have	evolved	during	a	“tropical	planet”	(Benton,	1993)	and	
high	niche	conservatism	in	plants	(Prinzing,	2001;	Romdal,	Araújo,	&	
Rahbek,	2013)	means	that	many	species	are	likely	to	have	retained	a	
tropical	affinity	(Wiens	&	Donoghue,	2004).	Our	results	concur	with	
this	hypothesis	as	climate	variables	indicating	tropicality,	particularly	
combinations	of	temperature	and	water,	were	found	to	be	physio‐
logically	important	to	plants.

Our	second	hypothesis	was	also	supported.	By	calculating	and	
mapping	 globally	 the	 minimum	 residual	 differences	 between	 PC	
scores	for	the	SDM	and	physiology	variables,	we	show	that	the	spa‐
tial	patterns	of	climate	variation	described	by	 the	most	commonly	
used	SDM	variables	do	not	match	those	described	by	physiologically	

F I G U R E  3  Global	map	of	the	minimum	residual	differences	from	multiple	regression	analyses	of	SDM	principal	components	1–3	using	
scores	from	principal	components	1–3	for	the	physiology	variables	as	predictors
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relevant	variables.	We	conclude	that	the	top	10	SDM	variables	are	
distal	indicators	of	species	distributions.

Residual	differences	were	greatest	in	areas	where	precipitation	
regimes	or	the	mutual	availability	of	temperature	and	water	become	
more	important	to	the	classification	of	climate,	which	confirms	that	
the	SDM	variables	are	poor	proxies	for	physiological	variables	that	
relate	to	water	availability,	particularly	soil	moisture	content	and	the	
timing	of	rainfall	within	the	growing	season.	Areas	of	hot	desert	and	
polar	climates	(as	defined	by	the	Köppen‐Geiger	climate	classifica‐
tion	system—Geiger,	1961;	see	Kottek	et	al.,	2006	for	updated	global	
map),	however,	were,	in	general,	similarly	described	by	both	sets	of	
variables.	These	are	areas	of	temperature	extremes	(although	in	op‐
posing	directions)	which	suggests	 that	once	a	certain	 temperature	
threshold	 is	 reached,	average	climate	data	can	adequately	capture	
physiologically	limiting	conditions	and	may	be	good	substitutes	for	
more	proximal	variables	in	these	cases.

Importantly,	many	areas	with	larger	residual	differences	are	con‐
sidered	conservation	priorities	(Myers,	Mittermeier,	Mittermeier,	Da	
Fonseca,	&	Kent,	2000)	due	 to	a	 combination	of	high	biodiversity	
(Mittermeier,	Myers,	 Thomsen,	 Da	 Fonseca,	 &	Olivieri,	 1998)	 and	
vulnerability	 to	 climate	 change	 (Malcolm,	 Liu,	 Neilson,	 Hansen,	 &	
Hannah,	2006).	For	example,	there	were	large	differences	in	scores	
in	the	Indo‐Burma	biodiversity	hotspot	in	tropical	Asia,	as	well	as	the	
tropical	 rainforest	 regions	of	 South	America	 and	 Indonesia,	which	
all	 experience	 consistently	 high	 rainfall	 and	 warm	 temperatures	
throughout	 the	year.	There	were	also	 large	 residual	differences	 in	
the	 Himalayan,	 Appalachian	 and	 Scandinavian	 mountain	 regions,	
which	may	reflect	the	fact	that	soil	moisture	content	can	be	highly	
spatially	(le	Roux,	Aalto,	&	Luoto,	2013)	and	temporally	(Kemppinen,	
Niittynen,	Riihmäki,	&	Luoto,	2018)	heterogeneous	and	may	show	
weak	correlations	to	precipitation	in	mountainous	terrains	(le	Roux	
et	 al.,	 2013).	 It	may	 therefore	be	 especially	 important	 to	 consider	
using	more	proximal	climate	variables	when	studying	species	distri‐
butions	 in	tropical	or	mountainous	areas,	particularly	 if	 the	results	
will	 inform	 conservation	 policy	 or	 planning	 decisions	 to	 protect	
global	biodiversity.

4.2 | Variable selection in a changing climate

Species	 distribution	 models	 have	 become	 a	 popular	 tool	 among	
ecologists	and	conservation	biologists	to	predict	how	species	might	
respond	to	climate	change	(Pearson	&	Dawson,	2003).	Indeed,	in	the	
studies	 we	 examined,	 nearly	 one‐third	 (48/150)	 aimed	 to	 predict	
species	 response	 to	climate	change	as	 their	primary	objective	and	
most	 referred	to	 the	application	of	SDMs	for	 this	purpose.	As	 the	
climate	warms	 further	and	 the	 results	of	previous	change	become	
more	 evident,	 the	 role	 of	 SDMs	 to	predict	 the	 impacts	 of	 climate	
change	 on	 species	 distributions	 and	 aid	 conservation	 strategies	 is	
likely	 to	 grow	and	many	 authors	have	highlighted	 the	need	 to	 ac‐
count	 for	 climate	 change	 in	protected	area	design	 (Araújo,	Cabez,	
Thuiller,	Hannah,	&	Williams,	2004;	Hannah	et	al.,	2007)	and	to	as‐
sess	 the	best	 locations	 to	protect	 species	of	 conservation	priority	
(e.g.,	20082008;	Porfirio	et	al.,	2014).

When	 applying	 SDMs	 to	 climate	 change	 studies,	 the	 variables	
selected	for	modelling	are	assumed	to	be	good	predictors	of	a	spe‐
cies'	range	in	a	new	time	and	place.	Until	a	forecasted	future	climate	
is	realized,	however,	it	will	be	impossible	to	determine	the	accuracy	
of	 these	predictions.	A	major	 advantage	of	using	proximal	 climate	
variables	is	that	their	direct	link	to	physiology	and	therefore	species	
distributions	can	be	quantified	and	is	unlikely	to	change	significantly	
over	 the	modelled	 time	period	 (acknowledging	 that	although	 local	
adaptation	 may	 occur),	 it	 is	 unlikely	 to	 match	 the	 rate	 of	 climate	
change	 (Davis	 &	 Shaw,	 2001).	 This	 means	 proximal	 variables	 are	
likely	to	be	more	reliable	indicators	of	future	species	distributions.

The	distal	 variables	used	often	 in	 correlative	 studies	may	pro‐
vide	 less	robust	estimates	of	 future	ranges	as	their	correlations	to	
proximal	variables	cannot	confidently	be	extrapolated	over	space	or	
time	(Elith	&	Leathwick,	2009).	Unquantified	additional	factors	may	
support	a	relationship	between	a	distal	variable	and	species	distribu‐
tions	in	the	present	day.	The	contribution	of	these	“hidden”	variables	
may	break	down	or	cease	to	apply	in	new	locations	or	over	new	time	
periods	and	thus	lead	to	unreliable	predictions	from	SDMs.	Basing	
future	range	predictions	purely	on	changes	to	a	distal	climate	vari‐
able	may	therefore	be	problematic	if	the	climatic	component	of	the	
original	correlation	does	not	match	physiologically	relevant	patterns	
of	variation.

We	show	here	that,	on	a	coarse‐scale,	the	spatial	patterns	of	cli‐
mate	variation	described	by	the	SDM	variables	differ	from	the	key	
physiology	variables.	Although	we	cannot	prove	that	our	physiology	
variables	would	be	appropriate	indicators	of	changes	in	species	dis‐
tributions	at	the	level	at	which	the	organism	responds,	they	maintain	
a	justifiable	link	to	limiting	processes	over	both	spatial	and	temporal	
scales	that	cannot	be	assumed	for	the	SDM	variables.	Selection	of	
more	proximal	 variables	 could	help	 to	 ensure	 that	 the	predictions	
from	SDMs	which	 inform	 important	 conservation	decisions	 are	 as	
accurate	and	reliable	as	possible	and	do	not	over‐	or	under‐estimate	
ranges	 to	 the	point	where	protected	areas	may	 fail	 to	protect	 the	
species	of	interest.

Alongside	 raising	 the	 need	 for	 accurate	 predictions	 of	 species	
ranges,	climate	change	will	increase	the	challenges	associated	with	
modelling	 their	 distributions.	 For	 example,	 climate	 change	 is	 ex‐
pected	to	increase	the	frequency	and	intensity	of	extreme	weather	
events	 (Collins	et	al.,	2013)	which	can	advance	the	change	 in	spe‐
cies	 composition	 in	 response	 to	 altered	 environmental	 conditions	
(Jentsch,	Kreyling,	&	Beierkuhnlein,	2007).	The	possibility	of	more	
extreme	weather	supports	the	use	of	physiologically	relevant	climate	
variables	as	correlations	between	proximal	variables	that	reflect	cli‐
matic	events	and	those	describing	averaged	trends	may	weaken	or	
break	 down	 in	 more	 unpredictable	 climates.	 Fay,	 Carlisle,	 Knapp,	
Blair,	and	Collins	(2003),	for	example,	show	that	increased	variabil‐
ity	of	rainfall,	without	reduction	in	the	overall	rainfall	amount,	can	
reduce	above	ground	net	primary	productivity	in	a	tall‐grass	prairie	
in	Kansas.

Similarly,	 Orlowsky	 and	 Seneviratne	 (2012)	 report	 that	 pre‐
dicted	future	seasonal	extremes	of	temperature	scale	with	changes	
in	 global	 annual	mean	 temperature	by	 a	 factor	of	more	 than	 two,	

sps:https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12189ele12189-bib-0038
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with	the	consequence	that	 limiting	thresholds	of	temperature	may	
not	be	captured	in	averaged	data	(e.g.,	Parker	&	Abatzoglou,	2017).	
Although	recent	range	expansions	have	been	attributed	to	rises	 in	
mean	annual	temperatures	(Wilson	et	al.,	2005),	this	means	that	spe‐
cies	 responses	 to	distal	predictors	are	 likely	 to	be	 lagged,	and	 the	
absolute	number	of	days	outside	of	their	physiological	tolerance	may	
increase	 on	 a	much	 shorter	 time‐scale	 (Parmesan,	 Root,	 &	Willig,	
2000).	Late	frosts	or	summer	heatwaves,	for	example,	are	likely	to	
impact	 species	 almost	 immediately	 if	 these	 affect	 their	 ability	 to	
survive,	grow	and	reproduce	and	proximal	variables	would	be	able	
to	capture	these	tolerances	and	track	changes	to	species	distribu‐
tions	occurring	in	“real‐time.”	This	may	also	provide	information	on	
changes	to	species	distributions	on	a	time‐scale	that	is	more	relevant	
to	conservation	decision‐making	and	facilitate	the	development	of	
proactive	management	strategies.

A	 lengthening	 of	 the	 growing	 season	 is	 another	 expected	 re‐
sult	of	 climate	 change	 (Jentsch	et	 al.,	 2007)	 and	has	already	been	
observed	 in	 higher	 latitudes	 (Menzel	 &	 Fabian,	 1999).	 We	 have	
identified	 that	 climate	 conditions	 during	 the	 growing	 season	 have	
important	physiological	implications	for	plants	and	it	could	therefore	
become	even	more	crucial	for	variables	explicitly	to	consider	climate	
conditions	within	 this	period	 in	 the	 future.	Mosedale,	Wilson,	and	
Maclean	 (2015),	 for	 example,	 show	 that	 although	 climate	 change	
may	generally	improve	growing	conditions	for	grapevine,	the	risk	of	
frost	damage	during	spring	increases	under	many	scenarios	due	to	
advancement	 in	 the	 timing	 of	 budbreak.	A	 longer	 growing	 season	
could	therefore	leave	agricultural	crops	more	vulnerable	to	extreme	
events	which	currently	tend	to	occur	outside	of	this	critical	period	
(Lesk,	Rowhani,	&	Ramankutty,	2016).	To	base	crop	selection	deci‐
sions	on	SDMs	that	do	not	consider	how	climate	change	may	alter	
conditions	during	the	sensitive	growth	stages	of	plants	 is	a	 risk	 to	
livelihoods	and	food	security.

Understanding	 the	 proximal	 drivers	 of	 the	 natural	 or	 farmed	
distributions	 of	 agricultural	 crops	 could	 be	 important	 to	maintain	
yields	 in	 species	which	are	 threatened	by	a	changing	climate	 (e.g.,	
Ray,	Gerber,	MacDonald,	&	West,	2015).	Crop	SDMs	that	use	prox‐
imal	climate	variables	may	be	more	appropriate	to	inform	smart	fu‐
ture	land	use	planning	and	crop	decision‐making	based	on	species'	
environmental	 optima	and	 tolerances.	 Similarly,	 proximal	 variables	
may	be	better	able	to	suggest	how	management	practices	could	be	
adjusted	to	grow	new	crops,	such	as	through	the	use	of	greenhouses	
to	raise	growing	season	temperatures,	or	to	mitigate	the	impacts	of	
a	changing	climate	on	yields,	such	as	through	the	use	of	irrigation	in	
areas	which	become	more	arid.

4.3 | Using physiological variables

Species	distributions	are	shaped	ultimately	by	interrelations	between	
climate	conditions	and	biological	traits	(Sterck,	Markesteijn,	Toledo,	
Schieving,	&	Poorter,	2014).	 In	their	study	of	North	American	tree	
species,	Morin,	Augspurger,	and	Chuine	(2007),	for	example,	show	
how	physiological	responses	to	climate	conditions	constrain	species'	
ranges,	particularly	through	impacts	on	phenological	processes	such	

as	fruit	ripening	and	flowering.	Similarly,	Thuiller,	Lavorel,	Midgley,	
Lavergne,	and	Rebelo	 (2004)	 showed	 that	gradients	 in	climate	ex‐
plain	 almost	 all	 variation	 in	 the	 niche	 distribution	 of	 88	 flowering	
plants	of	the	Cape	Floristic	Region,	South	Africa,	with	niche	differ‐
entiation	characterized	by	differences	in	traits	such	as	leaf	area	and	
timing	of	initiation	of	flowering.	The	variables	used	in	SDMs	attempt	
to	 capture,	 at	 the	 population‐level,	 the	 effect	 of	many	 individuals	
responding	 to	 climatic	 pressures	 and	must	 therefore	 offer	 a	 good	
“mean	 field	 approximation”	 for	 biological	 processes	 that	 deter‐
mine	whether	a	species	can	survive,	grow	and	reproduce	in	an	area	
(Bennie	et	al.,	2014).	Proximal	variables	are	intimately	tied	to	biologi‐
cal	process	of	the	study	species	and	as	such,	may	provide	better	ap‐
proximations	of	the	climatic	requirements	of	a	species	that	influence	
their	distributions	(Kearney	&	Porter,	2009).

The	 physiology	 variables	 identified	 in	 this	 study	 derive	 from	
experimental	 studies,	 where	 plant	 responses	 to	 climate	 are	 often	
quantified	very	close	to	the	individual	(within	metres	or	even	less).	
We	 recognize	 that	 in	 modelling	 these	 variables	 at	 coarse‐resolu‐
tion,	conditions	may	differ	significantly	from	those	experienced	by	
plants	(Bramer	et	al.,	2018;	Tabor	&	Williams,	2010)	but	importantly,	
and	unlike	 the	SDM	proxies,	 these	variables	 retain	a	direct	 link	 to	
physiological	 processes.	 Our	 inability	 to	 construct	 the	 physiology	
variables	at	a	fine‐resolution	highlights	the	current	limitations	to	ef‐
fectively	mapping	species	distributions	with	available	climate	data.	
Physiological	 variables	 may	 be	 excluded	 from	 SDMs	 because	 the	
data	required	to	construct	them	are	unavailable	(Kearney	&	Porter,	
2009)	and	it	is	likely	that	our	list	of	the	top	10	SDM	variables	reflects	
these	data	deficiencies;	global	climate	surfaces	for	Bioclim	variables	
are	readily	downloadable	at	1	km	resolution	whereas	no	equivalent	
dataset	exists	for	the	physiological	variables	(Bramer	et	al.,	2018).

Models	which	allow	microclimate	conditions	to	be	estimated	from	
coarse‐grid	data	do	exist.	The	microclimate	model	of	NicheMapper,	
for	example,	can	be	used	to	predict	hourly	local	microclimates	from	
macroscale	data	(Kearney,	Shamakhy,	et	al.,	2014).	However,	a	num‐
ber	of	climate	forcing	variables	are	required	as	inputs	and	the	reli‐
ability	of	microclimate	estimates	may	be	compromised	if	hourly	data	
are	 unavailable	 and	 therefore	 obtained	 by	 interpolation.	 Readily	
available	datasets	of	ecophysiologically	meaningful	variables,	or	fine	
spatial	and	temporal	climate	data,	which	allow	such	variables	to	be	
derived	(Kearney,	Isaac,	&	Porter,	2014),	are	therefore	much	needed.	
To	achieve	this,	it	will	be	crucial	to	expand	monitoring	networks	for	
physiologically	relevant	climate	variables	or	further	develop	and	im‐
plement	methods	that	downscale	coarse	climate	data	to	predict	local	
variability	in	these	conditions	(e.g.,	microclima	(Maclean,	Mosedale,	
&	 Bennie,	 2018);	 NicheMapper	 (Kearney,	 Shamakhy,	 et	 al.,	 2014);	
NicheMapR	 (Kearney	 &	 Porter,	 2017);	 Maclean,	 Suggitt,	 Wilson,	
Duffy,	&	Bennie,	2017).

To	 predict	 how	 climate	 change	 may	 impact	 species	 distribu‐
tions,	 physiological	 datasets	 for	 potential	 future	 climate	 scenar‐
ios	will	 also	be	 required.	This	may	be	possible	 through	 the	use	of	
statistical	weather	 generators	which	 produce	multiple	 statistically	
plausible	 simulations	 of	 weather	 at	 temporal	 resolutions	 (e.g.,	
Ivanov,	Bras,	&	Curtis,	2007)	which	could	 in	aggregate	be	used	 to	
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generate	probabilistic	estimates	of	physiologically	relevant	variables.	
Importantly,	 this	 approach	 to	 modelling	 future	 climate	 conditions	
can	capture	changes	to	climate	extremes	and	variability	(Semenov	&	
Barrow,	1997)	and	has	been	applied	with	success	in	the	agricultural	
literature	 in	 studies	 of	 crop	 suitability	 (e.g.,	White,	 Hoogenboom,	
Kimball,	&	Wall,	2011;	Holzkämper,	Calanca,	Honti,	&	Fuhrer,	2015)	
and	future	climatic	risk	(Mosedale	et	al.,	2015).	Meanwhile,	a	useful	
next	step	would	be	to	test	the	ability	of	our	top	10	physiological	vari‐
ables	to	predict	the	current	distributions	of	some	species.

5  | CONCLUSION

Species	 distribution	models	 should	 be	 constructed	 using	 aspects	
of	 climate	 to	which	 the	 study	 species	 is	 known	 or	most	 likely	 to	
respond	(Bramer	et	al.,	2018;	Suggitt	et	al.,	2017).	We	have	shown	
here	 that	 the	most	 commonly	 used	 SDM	 variables	 often	 neglect	
important	physiological	factors	and,	in	particular,	that	soil	moisture	
content	and	the	timing	of	climatic	events	during	the	growing	season	
should	feature	more	explicitly	in	the	climate	variables	used	in	plant	
SDMs.	We	echo	other	researchers	in	that	climate	variables	should	
be	 justified	 based	 on	 the	 physiology	 of	 the	 study	 species	 (e.g.,	
Austin	&	Van	Niel,	 2011),	 but	more	 specifically,	 that	 they	 should	
be	 closely	 related	 to	 these	proximal	mechanisms.	This	 is	 likely	 to	
be	particularly	 important	when	predicting	species	distributions	 in	
tropical	or	mountainous	environments,	where	we	suggest	that	the	
results	of	SDMs	that	use	distal	variables	are	interpreted	with	more	
caution.

Data	deficiencies	are	often	considered	a	 limiting	factor	for	the	
use	of	proximal	variables	in	SDMs.	With	the	advent	and	recent	im‐
provements	in	remote	sensing	technology,	there	are	more	opportu‐
nities	than	ever	before	to	measure	physiologically	relevant	variables	
and	use	these	data	to	model	species	distributions	(e.g.,	Kemppinen	et	
al.,	2018).	Wherever	possible,	new	technologies	should	be	exploited	
to	expand	physiologically	relevant	climate	datasets	as	this	could	help	
prevent	variable	use	being	compromised	based	on	data	availability.	
We	also	urge	climatologists	to	consider,	as	a	matter	of	priority,	the	
development	of	high‐resolution	climate	surfaces	for	physiologically	
meaningful	variables.	The	ability	of	statistical	weather	generators	to	
provide	information	on	physiological	conditions	for	possible	future	
climate	 scenarios	 should	 also	 be	 explored.	 There	 is	 a	 growing	de‐
mand	for	robust	predictions	of	species	distributions	and	taking	steps	
to	make	physiologically	relevant	climate	data	more	widely	available	
for	use	 in	SDMs	could	support	 the	best	conservation	decisions	 to	
protect	global	biodiversity	as	the	climate	changes.
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