702 research outputs found

    F- and G-Actin Concentrations in Lamellipodia of Moving Cells

    Get PDF
    Cells protrude by polymerizing monomeric (G) into polymeric (F) actin at the tip of the lamellipodium. Actin filaments are depolymerized towards the rear of the lamellipodium in a treadmilling process, thereby supplementing a G-actin pool for a new round of polymerization. In this scenario the concentrations of F- and G-actin are principal parameters, but have hitherto not been directly determined. By comparing fluorescence intensities of bleached and unbleached regions of lamellipodia in B16-F1 mouse melanoma cells expressing EGFP-actin, before and after extraction with Triton X-100, we show that the ratio of F- to G-actin is 3.2+/−0.9. Using electron microscopy to determine the F-actin content, this ratio translates into F- and G-actin concentrations in lamellipodia of approximately 500 µM and 150 µM, respectively. The excess of G-actin, at several orders of magnitude above the critical concentrations at filament ends indicates that the polymerization rate is not limited by diffusion and is tightly controlled by polymerization/depolymerization modulators

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base

    Development of a new ultra sensitive real-time PCR assay (ultra sensitive RTQ-PCR) for the quantification of HBV-DNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Improved sensitivity of HBV-DNA tests is of critical importance for the management of HBV infection. Our aim was to develop and assess a new ultra sensitive in-house real-time PCR assay for HBV-DNA quantification (ultra sensitive RTQ-PCR).</p> <p>Results</p> <p>Previously used HBV-DNA standards were calibrated against the WHO 1<sup>st </sup>International Standard for HBV-DNA (OptiQuant<sup>® </sup>HBV-DNA Quantification Panel, Accrometrix Europe B.V.). The 95% and 50% HBV-DNA detection end-point of the assay were 22.2 and 8.4 IU/mL. According to the calibration results, 1 IU/mL equals 2.8 copies/mL. Importantly the clinical performance of the ultra sensitive real-time PCR was tested similar (67%) to the Procleix Ultrio discriminatory HBV test (dHBV) (70%) in low-titer samples from patients with occult Hepatitis B. Finally, in the comparison of ultra sensitive RTQ-PCR with the commercially available COBAS TaqMan HBV Test, the in-house assay identified 94.7% of the 94 specimens as positive versus 90.4% identified by TaqMan, while the quantitative results that were positive by both assay were strongly correlated (<it>r </it>= 0.979).</p> <p>Conclusions</p> <p>We report a new ultra sensitive real time PCR molecular beacon based assay with remarkable analytical and clinical sensitivity, calibrated against the WHO 1<sup>st </sup>International standard.</p

    A cartilage growth mixture model for infinitesimal strains: solutions of boundary-value problems related to in vitro growth experiments

    Get PDF
    A cartilage growth mixture (CGM) model is linearized for infinitesimal elastic and growth strains. Parametric studies for equilibrium and nonequilibrium boundary-value problems representing the in vitro growth of cylindrical cartilage constructs are solved. The results show that the CGM model is capable of describing the main biomechanical features of cartilage growth. The solutions to the equilibrium problems reveal that tissue composition, constituent pre-stresses, and geometry depend on collagen remodeling activity, growth symmetry, and differential growth. Also, nonhomogeneous growth leads to nonhomogeneous tissue composition and constituent pre-stresses. The solution to the nonequilibrium problem reveals that the tissue is nearly in equilibrium at all time points. The results suggest that the CGM model may be used in the design of tissue engineered cartilage constructs for the repair of cartilage defects; for example, to predict how dynamic mechanical loading affects the development of nonuniform properties during in vitro growth. Furthermore, the results lay the foundation for future analyses with nonlinear models that are needed to develop realistic models of cartilage growth

    Revisiting the mechanism of coagulation factor XIII activation and regulation from a structure/functional perspective

    Get PDF
    The activation and regulation of coagulation Factor XIII (FXIII) protein has been the subject of active research for the past three decades. Although discrete evidence exists on various aspects of FXIII activation and regulation a combinatorial structure/functional view in this regard is lacking. In this study, we present results of a structure/function study of the functional chain of events for FXIII. Our study shows how subtle chronological submolecular changes within calcium binding sites can bring about the detailed transformation of the zymogenic FXIII to its activated form especially in the context of FXIIIA and FXIIIB subunit interactions. We demonstrate what aspects of FXIII are important for the stabilization (first calcium binding site) of its zymogenic form and the possible modes of deactivation (thrombin mediated secondary cleavage) of the activated form. Our study for the first time provides a structural outlook of the FXIIIA 2 B 2 heterotetramer assembly, its association and dissociation. The FXIIIB subunits regulatory role in the overall process has also been elaborated upon. In summary, this study provides detailed structural insight into the mechanisms of FXIII activation and regulation that can be used as a template for the development of future highly specific therapeutic inhibitors targeting FXIII in pathological conditions like thrombosis

    A Computational Assay of Estrogen Receptor alpha Antagonists Reveals the Key Common Structural Traits of Drugs Effectively Fighting Refractory Breast Cancers

    Get PDF
    Somatic mutations of the Estrogen Receptor alpha (ER alpha) occur with an up to 40% incidence in ER sensitive breast cancer (BC) patients undergoing prolonged endocrine treatments. These polymorphisms are implicated in acquired resistance, disease relapse, and increased mortality rates, hence representing a current major clinical challenge. Here, multi-microseconds (12.5 mu s) molecular dynamics simulations revealed that recurrent ER alpha. polymorphisms (i.e. L536Q, Y5375, Y537N, D538G) (mER alpha) are constitutively active in their apo form and that they prompt the selection of an agonist (active)-like conformation even upon antagonists binding. Interestingly, our simulations rationalize, for thefirst time, the efficacy profile of (pre)clinically used Selective Estrogen Receptor Modulators/Downregulators (SERMs/SERDs) against these variants, enlightening, at atomistic level of detail, the key common structural traits needed by drugs able to effectively fight refractory BC types. This knowledge represents a key advancement for mechanism-based therapeutics targeting resistant ER alpha isoforms, potentially allowing the community to move a step closer to 'precision medicine' calibrated on patients' genetic profiles and disease progression

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Z′ gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/γ bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the μ + μ −channel. A Z ′ boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Z′ Models

    Plasma extracellular vesicle protein content for diagnosis and prognosis of global cardiovascular disease

    Get PDF
    Cardiovascular disease is a major public health problem worldwide. Its growing burden is particularly ominous in Asia, due to increasing rates of major risk factors such as diabetes, obesity and smoking. There is an urgent need for early identification and treatment of individuals at risk of adverse cardiovascular events. Plasma extracellular vesicle proteins are novel biomarkers that have been shown to be useful in the diagnosis, risk stratification and prognostication of patients with cardiovascular disease. Ongoing parallel biobank initiatives in European (the Netherlands) and Asian (Singapore) populations offer a unique opportunity to validate these biomarkers in diverse ethnic groups
    corecore