167 research outputs found

    No persistent effects of intracerebral curcumin administration on seizure progression and neuropathology in the kindling rat model for temporal lobe epilepsy

    Get PDF
    PURPOSE: Curcumin is known for its neuroprotective, anti-inflammatory and anti-oxidant properties and has been investigated as a potential therapeutic drug for Temporal Lobe Epilepsy (TLE). We previously found anti-epileptogenic properties of curcumin in an in vitro brain slice model for epileptogenesis, and inhibitory effects on the MAPK-pathway in vivo after intracerebrally applying curcumin in post-status epilepticus rats. Here, we investigated whether the intracerebral application of curcumin could be anti-epileptogenic in the rapid kindling rat model for TLE. METHODS: Curcumin or vehicle was injected directly into the brain through an intracerebral ventricular cannula at 5 consecutive days during the kindling process. Kindling consisted of repeated electrical stimulations of the angular bundle (12 times a day with a 30 min interval) every other day, until rats were fully kindled or until 36 stimulations were administered. One week after kindling acquisition, additional kindling stimulations were applied in a re-test in the absence of curcumin- or vehicle treatment. RESULTS: Curcumin-treated rats required more stimulations compared to vehicle-treated rats to reach Racine stage IV seizures, indicating that curcumin delayed seizure development. However, it did not prevent the fully kindled state as shown in the re-test. Increasing the dose of curcumin did not produce a delay in seizure development. Immunohistochemistry showed that kindling produced cell loss, astrogliosis, mossy fiber sprouting and neurogenesis in the dentate gyrus, which were not different between vehicle- and curcumin-treated groups. CONCLUSION: Although curcumin's effects on neuropathology were not detected and the delay of kindling development was transient, the data warrant further exploration of its anti-epileptogenic potential using formulations that further increase its bioavailability

    Metabolomics reveals metabolic alterations by intrauterine growth restriction in the fetal rabbit brain

    Get PDF
    Background: Intrauterine Growth Restriction (IUGR) due to placental insufficiency occurs in 5-10% of pregnancies and is a major risk factor for abnormal neurodevelopment. The perinatal diagnosis of IUGR related abnormal neurodevelopment represents a major challenge in fetal medicine. The development of clinical biomarkers is considered a promising approach, but requires the identification of biochemical/molecular alterations by IUGR in the fetal brain. This targeted metabolomics study in a rabbit IUGR model aimed to obtain mechanistic insight into the effects of IUGR on the fetal brain and identify metabolite candidates for biomarker development. Methodology/Principal Findings: At gestation day 25, IUGR was induced in two New Zealand rabbits by 40-50% uteroplacental vessel ligation in one horn and the contralateral horn was used as control. At day 30, fetuses were delivered by Cesarian section, weighed and brains collected for metabolomics analysis. Results showed that IUGR fetuses had a significantly lower birth and brain weight compared to controls. Metabolomics analysis using liquid chromatographyquadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and database matching identified 78 metabolites. Comparison of metabolite intensities using a t-test demonstrated that 18 metabolites were significantly different between control and IUGR brain tissue, including neurotransmitters/peptides, amino acids, fatty acids, energy metabolism intermediates and oxidative stress metabolites. Principle component and hierarchical cluster analysis showed cluster formations that clearly separated control from IUGR brain tissue samples, revealing the potential to develop predictive biomarkers. Moreover birth weight and metabolite intensity correlations indicated that the extent of alterations was dependent on the severity of IUGR. Conclusions: IUGR leads to metabolic alterations in the fetal rabbit brain, involving neuronal viability, energy metabolism, amino acid levels, fatty acid profiles and oxidative stress mechanisms. Overall findings identified aspargine, ornithine, Nacetylaspartylglutamic acid, N-acetylaspartate and palmitoleic acid as potential metabolite candidates to develop clinical biomarkers for the perinatal diagnosis of IUGR related abnormal neurodevelopment

    Current approaches and future role of high content imaging in safety sciences and drug discovery

    Get PDF
    High content imaging combines automated microscopy with image analysis approaches to simultaneously quantify multiple phenotypic and/or functional parameters in biological systems. The technology has become an important tool in the fields of safety sciences and drug discovery, because it can be used for mode-of-action identification, determination of hazard potency and the discovery of toxicity targets and biomarkers. In contrast to conventional biochemical endpoints, high content imaging provides insight into the spatial distribution and dynamics of responses in biological systems. This allows the identification of signaling pathways underlying cell defense, adaptation, toxicity and death. Therefore high content imaging is considered a promising technology to address the challenges for the Toxicity testing in the 21st century approach. Currently high content imaging technologies are frequently applied in academia for mechanistic toxicity studies and in pharmaceutical industry for the ranking and selection of lead drug compounds or to identify/confirm mechanisms underlying effects observed in vivo. A recent workshop gathered scientists working on high content imaging in academia, pharmaceutical industry and regulatory bodies with the objective to compile the state-of-the-art of the technology in the different institutions. They defined technical and methodological gaps, addressed the need for quality control, suggested control compounds and acceptance criteria, highlighted cell sources and new readouts and discussed future requirements for regulatory implementation. This review summarizes the discussion, proposed solutions and recommendations of the specialists contributing to the workshop.JRC.I.5-Systems Toxicolog

    Computerised patient-specific prediction of the recovery profile of upper limb capacity within stroke services: The next step

    Get PDF
    Introduction: Predicting upper limb capacity recovery is important to set treatment goals, select therapies and plan discharge. We introduce a prediction model of the patient-specific profile of upper limb capacity recovery up to 6 months poststroke by incorporating all serially assessed clinical information from patients. Methods: Model input was recovery profile of 450 patients with a first-ever ischaemic hemispheric stroke measured using the Action Research Arm Test (ARAT). Subjects received at least three assessment sessions, starting within the first week until 6 months poststroke. We developed mixed-effects models that are able to deal with one or multiple measurements per subject, measured at non-fixed time points. The prediction accuracy of the different models was established by a fivefold cross-validation procedure. Results: A model with only ARAT time course, finger extension and shoulder abduction performed as good as models with more covariates. For the final model, cross-validation prediction errors at 6 months poststroke decreased as the number of measurements per subject increased, from a median error of 8.4 points on the ARAT (Q1-Q3:1.7-28.1) when one measurement early poststroke was used, to 2.3 (Q1-Q3:1-7.2) for seven measurements. An online version of the recovery model was developed that can be linked to data acquisition environments. Conclusio

    Common Variants in the Type 2 Diabetes KCNQ1 Gene Are Associated with Impairments in Insulin Secretion During Hyperglycaemic Glucose Clamp

    Get PDF
    Background: Genome-wide association studies in Japanese populations recently identified common variants in the KCNQ1 gene to be associated with type 2 diabetes. We examined the association of these variants within KCNQ1 with type 2 diabetes in a Dutch population, investigated their effects on insulin secretion and metabolic traits and on the risk of developing complications in type 2 diabetes patients. Methodology: The KCNQ1 variants rs151290, rs2237892, and rs2237895 were genotyped in a total of 4620 type 2 diabetes patients and 5285 healthy controls from the Netherlands. Data on macrovascular complications, nephropathy and retinopathy were available in a subset of diabetic patients. Association between genotype and insulin secretion/action was assessed in the additional sample of 335 individuals who underwent a hyperglycaemic clamp. Principal Findings: We found that all the genotyped KCNQ1 variants were significantly associated with type 2 diabetes in our Dutch population, and the association of rs151290 was the strongest (OR 1.20, 95% CI 1.07-1.35, p = 0.002). The risk C-allele of rs151290 was nominally associated with reduced first-phase glucose-stimulated insulin secretion, while the non-risk T-allele of rs2237892 was significantly correlated with increased second-phase glucose-stimulated insulin secretion (p = 0.025 and 0.0016, respectively). In addition, the risk C-allele of rs2237892 was associated with higher LDL and total cholesterol levels (p = 0.015 and 0.003, respectively). We found no evidence for an association of KCNQ1 with diabetic complications. Conclusions: Common variants in the KCNQ1 gene are associated with type 2 diabetes in a Dutch population, which can be explained at least in part by an effect on insulin secretion. Furthermore, our data suggest that KCNQ1 is also associated with lipid metabolism

    t4 Workshop Report: Integrated Testing Strategies (ITS) for Safety Assessment

    Get PDF
    Integrated testing strategies (ITS), as opposed to single definitive tests or fixed batteries of tests, are expected to efficiently combine different information sources in a quantifiable fashion to satisfy an information need, in this case for regulatory safety assessments. With increasing awareness of the limitations of each individual tool and the development of highly targeted tests and predictions, the need for combining pieces of evidence increases. The discussions that took place during this workshop, which brought together a group of experts coming from different related areas, illustrate the current state of the art of ITS, as well as promising developments and identifiable challenges. The case of skin sensitization was taken as an example to understand how possible ITS can be constructed, optimized and validated. This will require embracing and developing new concepts such as adverse outcome pathways (AOP), advanced statistical learning algorithms and machine learning, mechanistic validation and “Good ITS Practices”.JRC.I.5-Systems Toxicolog

    Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: a role for interleukin-1 beta

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Decreased expression of inwardly rectifying potassium (Kir) channels in astrocytes and glioma cells may contribute to impaired K<sup>+</sup> buffering and increased propensity for seizures. Here, we evaluated the potential effect of inflammatory molecules, such as interleukin-1β (IL-1β) on Kir4.1 mRNA and protein expression.</p> <p>Methods</p> <p>We investigated Kir4.1 (Kcnj10) and IL-1β mRNA expression in the temporal cortex in a rat model of temporal lobe epilepsy 24 h and 1 week after induction of status epilepticus (SE), using real-time PCR and western blot analysis. The U373 glioblastoma cell line and human fetal astrocytes were used to study the regulation of Kir4.1 expression in response to pro-inflammatory cytokines. Expression of Kir4.1 protein was also evaluated by means of immunohistochemistry in surgical specimens of patients with astrocytic tumors (<it>n</it> = 64), comparing the expression in tumor patients with (<it>n</it> = 38) and without epilepsy (<it>n</it> = 26).</p> <p>Results</p> <p>Twenty-four hours after onset of SE, Kir4.1 mRNA and protein were significantly down-regulated in temporal cortex of epileptic rats. This decrease in expression was followed by a return to control level at 1 week after SE. The transient downregulation of Kir4.1 corresponded to the time of prominent upregulation of IL-1β mRNA. Expression of Kir4.1 mRNA and protein in glial cells in culture was downregulated after exposure to IL-1β. Evaluation of Kir4.1 in tumor specimens showed a significantly lower Kir4.1 expression in the specimens of patients with epilepsy compared to patients without epilepsy. This paralleled the increased presence of activated microglial cells, as well as the increased expression of IL-1β and the cytoplasmic translocation of high mobility group box 1 (HMGB1).</p> <p>Conclusions</p> <p>Taken together, these findings indicate that alterations in expression of Kir4.1 occurring in epilepsy-associated lesions are possibly influenced by the local inflammatory environment and in particular by the inflammatory cytokine IL-1β.</p

    Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits

    Get PDF
    Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.Peer reviewe

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    Novel in vitro Approaches for the Detection of Acute Neurotoxicity Using Emerging Technologies

    No full text
    There is a gap in knowledge when it comes to the effects of chemicals on human health. In particular, the adverse effects on the developing and mature brain are of concern. Presently, neurotoxicity assessment of chemicals relies on behavioral and neuropathological studies. Although well accepted they are not suitable for systemic testing due to their time consumption, costs and providence of limited mechanistic information. To overcome such limitations, it is generally recommended to develop and make use of suitable tiered testing strategies making use of in vitro systems. However, consensus has not been reached on the design of such strategies due to the complexity of the nervous system, and the restrictions on endpoints to maintain feasibility. The present study aimed at developing and assessing the suitability of novel and promising in vitro approaches and technologies to integrate in vitro testing strategies for neurotoxicity testing. Overall, three in vitro systems were studied which evaluated the effects of chemicals on: mechanisms of cell death, neuronal function, and biochemical cellular processes in an efficient, comprehensive, and mechanistic manner.JRC.I.2-Validation of biomedical testing method
    corecore