25 research outputs found

    Use of sodium metasilicate for management of peach brown rot

    Get PDF
    Peach brown rot, caused by the Monilinia fructicola fungus, is the main disease affecting peach crops, and it is mainly controlled via frequent fungicide applications. This study aimed at searching for alternatives to the intensive use of chemicals, evaluating silicon doses to control pre and postharvest peach brown rot and their influence on maturation parameters and fruit quality. Treatments consisted of control (water) and sodium metasilicate doses (2 g L-1, 4 g L-1, 6 g L-1, 8 g L-1 and 10 g L-1 of water). The following assessments were made: spore germination and in vitro mycelial growth, brown rot incidence, soluble solids, titratable acidity, flesh firmness, total polyphenol content and fruit ethylene production and respiration rate. The 2 g L-1 dose reduced spore germination by 95 %. Doses of 6 g L-1 and 8 g L-1 satisfactorily reduced the disease incidence in the field, with 77 % and 89.2 % control, respectively. Sodium metasilicate resulted in the maintenance of great fruit firmness, reduced respiration and ethylene production and increased total polyphenol synthesis, but it did not influence the titratable acidity or soluble solids. Applying 6 g L-1 may potentially control pre and postharvest peach brown rot, besides increasing the total polyphenol synthesis and maintaining a higher flesh firmness

    The Contrasting Role of Extracellular Vesicles in Vascular Inflammation and Tissue Repair

    Get PDF

    ETHANOL AND NITRIC OXIDE IN QUALITY MAINTENANCE OF ‘GALAXY’ APPLES STORED UNDER CONTROLLED ATMOSPHERE

    No full text
    <div><p>ABSTRACT The aim of this work was to evaluate the effect of ethanol and two nitric oxide dose applications on the maintenance of the post-storage quality of ‘Galaxy’ apple during storage under controlled atmosphere (CA). Treatments evaluated were: [1] 1.2 kPa O2 + 2.0 kPa CO2; [2] CA + 20 ”L L-1 of nitric oxide, [3] CA + 40 ”L L-1 of nitric oxide; [4] CA + 1 ml of ethanol kg-1 fruit. Fruits received treatments before storage and were kept under CA during eight months and seven days of storage at 20 °C. Fruits had been kept on CA for eight months and seven days at 20° C. Fruits treated with ethanol showed higher ethylene production, low flesh firmness, high flesh breakdown, mealiness and acetaldehyde production. Fruits treated with 40 ”L L-1 nitric oxide showed lower ethylene production, respiration rate and ACC oxidase ( (1-aminocyclopropane-1-carboxylic acid) oxidase enzyme activity. Apples treated with 20 uL L-1 nitric oxide showed higher ethylene production, respiration rate, internal ethylene concentration CO2 and ethanol concentration. Ethanol and nitric oxide application before storage have no benefits in maintaining fruit quality after storage under CA due to lower flesh firmness, higher mealiness incidence, flesh breakdown and decay incidence.</p></div
    corecore