11 research outputs found

    Damping of spin waves and singularity of the longitudinal modes in the dipolar critical regime of the Heisenberg-ferromagnet EuS

    Full text link
    By inelastic scattering of polarized neutrons near the (200)-Bragg reflection, the susceptibilities and linewidths of the spin waves and the longitudinal spin fluctuations were determined separately. By aligning the momentum transfers q perpendicular to both \delta S_sw and the spontaneous magnetization M_s, we explored the statics and dynamics of these modes with transverse polarizations with respect to q. In the dipolar critical regime, where the inverse correlation length kappa_z(T) and q are smaller than the dipolar wavenumber q_d, we observe:(i) the static susceptibility of \delta S_sw^T(q) displays the Goldstone divergence while for \delta S_z^T(q) the Ornstein-Zernicke shape fits the data with a possible indication of a thermal(mass-)renormalization at the smallest q-values, i.e. we find indications for the predicted 1/q divergence of the longitudinal susceptibility; (ii) the spin wave dispersion as predicted by the Holstein-Primakoff theory revealing q_d=0.23(1)\AA^{-1}in good agreement with previous work in the paramagnetic and ferromagnetic regime of EuS; (iii) within experimental error, the (Lorentzian) linewidths of both modes turn out to be identical with respect to the q^2-variation, the temperature independence and the absolute magnitude. Due to the linear dispersion of the spin waves they remain underdamped for q<q_d. These central results differ significantly from the well known exchange dominated critical dynamics, but are quantitatively explained in terms of dynamical scaling and existing data for T>=T_C. The available mode-mode coupling theory, which takes the dipolar interactions fully into account, describes the gross features of the linewidths but not all details of the T- and q-dependencies. PACS: 68.35.Rh, 75.40.GbComment: 10 pages, 7 figure

    Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    New Regularized Algorithms for Transductive Learning

    No full text
    Abstract. We propose a new graph-based label propagation algorithm for transductive learning. Each example is associated with a vertex in an undirected graph and a weighted edge between two vertices represents similarity between the two corresponding example. We build on Adsorption, a recently proposed algorithm and analyze its properties. We then state our learning algorithm as a convex optimization problem over multi-label assignments and derive an efficient algorithm to solve this problem. We state the conditions under which our algorithm is guaranteed to converge. We provide experimental evidence on various real-world datasets demonstrating the effectiveness of our algorithm over other algorithms for such problems. We also show that our algorithm can be extended to incorporate additional prior information, and demonstrate it with classifying data where the labels are not mutually exclusive. Key words: label propagation, transductive learning, graph based semi-supervised learning.

    Identification, Prediction and Data Analysis of Noncoding RNAs: A Review

    No full text

    A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    Get PDF
    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force-the W+, W-, and Z(0) bosons-as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 x 10(6). The new particle is a boson with spin not equal to 1 and has a mass of about 1.25 giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle
    corecore