50 research outputs found
Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR
The possibility of measuring the proton electromagnetic form factors in the
time-like region at FAIR with the \PANDA detector is discussed. Detailed
simulations on signal efficiency for the annihilation of into a
lepton pair as well as for the most important background channels have been
performed. It is shown that precision measurements of the differential cross
section of the reaction can be obtained in a wide
angular and kinematical range. The individual determination of the moduli of
the electric and magnetic proton form factors will be possible up to a value of
momentum transfer squared of (GeV/c). The total cross section will be measured up to (GeV/c).
The results obtained from simulated events are compared to the existing data.
Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations,
4 tables, 9 figure
CRYOBALLOON ABLATION IN RUSSIAN SITES OF INTERVENTIONAL ATRIAL FIBRILLATION MANAGEMENT TREATMENT: RESULTS OF THE FIRST NATIONWIDE SURVEY
Aim. The results of cryoballoon ablation (CBA) are known from the studies performed in the experienced centers of catheter treatment of atrial fibrillation (AF). The current study presents the results of CBA in real practice in centers with various experienceMaterial and methods. Among 62 Russian sites performing catheter treatment of AF, in 15 the CBA methods were in use to isolate pulmonary veins, in the years 2012-2014. Centers staff were surveyed for the detailed description of all performed CBA till 10.2014. The questionnaire included 74 lines about the centers experience, patients properties and ablation procedures, management of patients and complications. At the second step the questionnaire was used about complications.Results. Thirteen centers provided full data on all patients with CBA (457 procedures; 94% for paroxysmal AF; >95% CBAs in Russia). Six centers were marked as highly experienced for CBA for AF (mean 414,2±339,4 ablations for AF per year), and 7 — with lesser experience (33,2±34,3 ablations for AF per year). Ten centers provided the results of 6/12 month observation, and 11 centers — detalization of the complications data. there were no statistically significant differences in arrhythmia absence in patients from both types of centers (61,9±10,0 versus 61,3±30,4%). Serious complications developed in 1,5% of patients (4 tamponades, 2 strokes and 1 diaphragmal nerve palsy) and were similarly spread among more and less experienced centers (1,4% vs. 2%, p>0,05). Minor adverse events (vascular, transient diaphragm nerve palsy, transient hemoptysis) were found in 37 (8%) patients and were more common in more experienced (teaching) centers. Overall frequency of adverse events and of vascular events was higher in females than males (12% and 4,9% vs. 6% and 0%, resp.; p<0,05).Conclusion. In the real clinical practice CBA is performed with acceptable efficacy and moderate frequency of adverse events development. In less experienced centers of catheter treatment of AF the prevalence of serious adverse events does not differ from less experienced. Women develop vascular complications more often
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Simulation results for future measurements of electromagnetic proton form
factors at \PANDA (FAIR) within the PandaRoot software framework are reported.
The statistical precision with which the proton form factors can be determined
is estimated. The signal channel is studied on the basis
of two different but consistent procedures. The suppression of the main
background channel, , is studied.
Furthermore, the background versus signal efficiency, statistical and
systematical uncertainties on the extracted proton form factors are evaluated
using two different procedures. The results are consistent with those of a
previous simulation study using an older, simplified framework. However, a
slightly better precision is achieved in the PandaRoot study in a large range
of momentum transfer, assuming the nominal beam conditions and detector
performance
Probing high-momentum protons and neutrons in neutron-rich nuclei
The atomic nucleus is one of the densest and most complex quantum-mechanical systems in nature. Nuclei account for nearly all the mass of the visible Universe. The properties of individual nucleons (protons and neutrons) in nuclei can be probed by scattering a high-energy particle from the nucleus and detecting this particle after it scatters, often also detecting an additional knocked-out proton. Analysis of electron- and proton-scattering experiments suggests that some nucleons in nuclei form close-proximity neutron-proton pairs1-12 with high nucleon momentum, greater than the nuclear Fermi momentum. However, how excess neutrons in neutron-rich nuclei form such close-proximity pairs remains unclear. Here we measure protons and, for the first time, neutrons knocked out of medium-to-heavy nuclei by high-energy electrons and show that the fraction of high-momentum protons increases markedly with the neutron excess in the nucleus, whereas the fraction of high-momentum neutrons decreases slightly. This effect is surprising because in the classical nuclear shell model, protons and neutrons obey Fermi statistics, have little correlation and mostly fill independent energy shells. These high-momentum nucleons in neutron-rich nuclei are important for understanding nuclear parton distribution functions (the partial momentum distribution of the constituents of the nucleon) and changes in the quark distributions of nucleons bound in nuclei (the EMC effect)1,13,14. They are also relevant for the interpretation of neutrino-oscillation measurements15 and understanding of neutron-rich systems such as neutron stars3,16
Modified structure of protons and neutrons in correlated pairs
The atomic nucleus is made of protons and neutrons (nucleons), which are themselves composed of quarks and gluons. Understanding how the quark–gluon structure of a nucleon bound in an atomic nucleus is modified by the surrounding nucleons is an outstanding challenge. Although evidence for such modification—known as the EMC effect—was first observed over 35 years ago, there is still no generally accepted explanation for its cause1,2,3. Recent observations suggest that the EMC effect is related to close-proximity short-range correlated (SRC) nucleon pairs in nuclei4,5. Here we report simultaneous, high-precision measurements of the EMC effect and SRC abundances. We show that EMC data can be explained by a universal modification of the structure of nucleons in neutron–proton SRC pairs and present a data-driven extraction of the corresponding universal modification function. This implies that in heavier nuclei with many more neutrons than protons, each proton is more likely than each neutron to belong to an SRC pair and hence to have distorted quark structure. This universal modification function will be useful for determining the structure of the free neutron and thereby testing quantum chromodynamics symmetry-breaking mechanisms and may help to discriminate between nuclear physics effects and beyond-the-standard-model effects in neutrino experiments
Study of doubly strange systems using stored antiprotons
Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P‾ANDA experiment at FAIR. For the first time, high resolution γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ−-atoms will be feasible and even the production of Ω−-atoms will be within reach. The latter might open the door to the |S|=3 world in strangeness nuclear physics, by the study of the hadronic Ω−-nucleus interaction. For the first time it will be possible to study the behavior of Ξ‾+ in nuclear systems under well controlled conditions
Comparing proton momentum distributions in and 3 nuclei via H H and He measurements
We report the first measurement of the reaction cross-section
ratios for Helium-3 (He), Tritium (H), and Deuterium (). The
measurement covered a missing momentum range of
MeV, at large momentum transfer (
(GeV)) and , which minimized contributions from non
quasi-elastic (QE) reaction mechanisms. The data is compared with plane-wave
impulse approximation (PWIA) calculations using realistic spectral functions
and momentum distributions. The measured and PWIA-calculated cross-section
ratios for He and H extend to just above the typical nucleon
Fermi-momentum ( MeV) and differ from each other by , while for He/H they agree within the measurement accuracy of
about 3\%. At momenta above , the measured He/H ratios differ from
the calculation by . Final state interaction (FSI) calculations
using the generalized Eikonal Approximation indicate that FSI should change the
He/H cross-section ratio for this measurement by less than 5\%. If
these calculations are correct, then the differences at large missing momenta
between the He/H experimental and calculated ratios could be due to the
underlying interaction, and thus could provide new constraints on the
previously loosely-constrained short-distance parts of the interaction.Comment: 8 pages, 3 figures (4 panels
Measurement of nuclear transparency ratios for protons and neutrons
This paper presents, for the first time, measurements of neutron transparency ratios for nuclei relative to C measured using the (e,e′n) reaction, spanning measured neutron momenta of 1.4 to 2.4 GeV/c. The transparency ratios were extracted in two kinematical regions, corresponding to knockout of mean-field nucleons and to the breakup of Short-Range Correlated nucleon pairs. The extracted neutron transparency ratios are consistent with each other for the two measured kinematical regions and agree with the proton transparencies extracted from new and previous (e,e′p) measurements, including those from neutron-rich nuclei such as lead. The data also agree with and confirm the Glauber approximation that is commonly used to interpret experimental data. The nuclear-mass-dependence of the extracted transparencies scales as Aα with α=−0.289±0.007, which is consistent with nuclear-surface dominance of the reactions