260 research outputs found
Pattern Formation of Glioma Cells: Effects of Adhesion
We investigate clustering of malignant glioma cells. \emph{In vitro}
experiments in collagen gels identified a cell line that formed clusters in a
region of low cell density, whereas a very similar cell line (which lacks an
important mutation) did not cluster significantly. We hypothesize that the
mutation affects the strength of cell-cell adhesion. We investigate this effect
in a new experiment, which follows the clustering dynamics of glioma cells on a
surface. We interpret our results in terms of a stochastic model and identify
two mechanisms of clustering. First, there is a critical value of the strength
of adhesion; above the threshold, large clusters grow from a homogeneous
suspension of cells; below it, the system remains homogeneous, similarly to the
ordinary phase separation. Second, when cells form a cluster, we have evidence
that they increase their proliferation rate. We have successfully reproduced
the experimental findings and found that both mechanisms are crucial for
cluster formation and growth.Comment: 6 pages, 6 figure
The Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls
Thermal wall is a convenient idealization of a rapidly vibrating plate used
for vibrofluidization of granular materials. The objective of this work is to
incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes
hydrodynamic modeling of dilute granular gases of monodisperse particles that
collide nearly elastically. The Knudsen temperature jump manifests itself as an
additional term, proportional to the temperature gradient, in the boundary
condition for the temperature. Up to a numerical pre-factor of order unity,
this term is known from kinetic theory of elastic gases. We determine the
previously unknown numerical pre-factor by measuring, in a series of molecular
dynamics (MD) simulations, steady-state temperature profiles of a gas of
elastically colliding hard disks, confined between two thermal walls kept at
different temperatures, and comparing the results with the predictions of a
hydrodynamic calculation employing the modified boundary condition. The
modified boundary condition is then applied, without any adjustable parameters,
to a hydrodynamic calculation of the temperature profile of a gas of inelastic
hard disks driven by a thermal wall. We find the hydrodynamic prediction to be
in very good agreement with MD simulations of the same system. The results of
this work pave the way to a more accurate hydrodynamic modeling of driven
granular gases.Comment: 7 pages, 3 figure
Patterns and Collective Behavior in Granular Media: Theoretical Concepts
Granular materials are ubiquitous in our daily lives. While they have been a
subject of intensive engineering research for centuries, in the last decade
granular matter attracted significant attention of physicists. Yet despite a
major efforts by many groups, the theoretical description of granular systems
remains largely a plethora of different, often contradicting concepts and
approaches. Authors give an overview of various theoretical models emerged in
the physics of granular matter, with the focus on the onset of collective
behavior and pattern formation. Their aim is two-fold: to identify general
principles common for granular systems and other complex non-equilibrium
systems, and to elucidate important distinctions between collective behavior in
granular and continuum pattern-forming systems.Comment: Submitted to Reviews of Modern Physics. Full text with figures (2Mb
pdf) avaliable at
http://mti.msd.anl.gov/AransonTsimringReview/aranson_tsimring.pdf Community
responce is appreciated. Comments/suggestions send to [email protected]
The minimization of mechanical work in vibrated granular matter
Experiments and computer simulations are carried out to investigate phase separation in a granular gas under vibration. The densities of the dilute and the dense phase are found to follow a lever rule and obey an equation of state. Here we show that the Maxwell equal-areas construction predicts the coexisting pressure and binodal densities remarkably well, even though the system is far from thermal equilibrium. This construction can be linked to the minimization of mechanical work associated with density fluctuations without invoking any concept related to equilibrium-like free energies
Evidence for Color Dichotomy in the Primordial Neptunian Trojan Population
In the current model of early Solar System evolution, the stable members of
the Jovian and Neptunian Trojan populations were captured into resonance from
the leftover reservoir of planetesimals during the outward migration of the
giant planets. As a result, both Jovian and Neptunian Trojans share a common
origin with the primordial disk population, whose other surviving members
constitute today's trans-Neptunian object (TNO) populations. The cold classical
TNOs are ultra-red, while the dynamically excited "hot" population of TNOs
contains a mixture of ultra-red and blue objects. In contrast, Jovian and
Neptunian Trojans are observed to be blue. While the absence of ultra-red
Jovian Trojans can be readily explained by the sublimation of volatile material
from their surfaces due to the high flux of solar radiation at 5AU, the lack of
ultra-red Neptunian Trojans presents both a puzzle and a challenge to formation
models. In this work we report the discovery by the Dark Energy Survey (DES) of
two new dynamically stable L4 Neptunian Trojans,2013 VX30 and 2014 UU240, both
with inclinations i >30 degrees, making them the highest-inclination known
stable Neptunian Trojans. We have measured the colors of these and three other
dynamically stable Neptunian Trojans previously observed by DES, and find that
2013 VX30 is ultra-red, the first such Neptunian Trojan in its class. As such,
2013 VX30 may be a "missing link" between the Trojan and TNO populations. Using
a simulation of the DES TNO detection efficiency, we find that there are 162
+/- 73 Trojans with Hr < 10 at the L4 Lagrange point of Neptune. Moreover, the
blue-to-red Neptunian Trojan population ratio should be higher than 17:1. Based
on this result, we discuss the possible origin of the ultra-red Neptunian
Trojan population and its implications for the formation history of Neptunian
Trojans
Dynamical analysis of three distant trans-Neptunian objects with similar orbits
This paper reports the discovery and orbital characterization of two extreme trans-Neptunian objects (ETNOs), 2016 QV 89 and 2016 QU 89 , which have orbits that appear similar to that of a previously known object, 2013 UH 15 . All three ETNOs have semi-major axes a≈172 AU and eccentricities e≈0.77 . The angular elements (i,ω,Ω) vary by 6, 15, and 49 deg, respectively between the three objects. The two new objects add to the small number of TNOs currently known to have semi-major axes between 150 and 250 AU, and serve as an interesting dynamical laboratory to study the outer realm of our Solar System. Using a large ensemble of numerical integrations, we find that the orbits are expected to reside in close proximity in the (a,e) phase plane for roughly 100 Myr before diffusing to more separated values. We then explore other scenarios that could influence their orbits. With aphelion distances over 300 AU, the orbits of these ETNOs extend far beyond the classical Kuiper Belt, and an order of magnitude beyond Neptune. As a result, their orbital dynamics can be affected by the proposed new Solar System member, referred to as Planet Nine in this work. With perihelion distances of 35-40 AU, these orbits are also influenced by resonant interactions with Neptune. A full assessment of any possible, new Solar System planets must thus take into account this emerging class of TNOs
Trans-Neptunian objects found in the first four years of the Dark Energy Survey
We present a catalog of 316 trans-Neptunian bodies (TNOs) detected from the first four seasons ("Y4" data) of the Dark Energy Survey (DES). The survey covers a contiguous 5000 deg(2) of the southern sky in the grizY optical/NIR filter set, with a typical TNO in this part of the sky being targeted by 25-30 Y4 exposures. This paper focuses on the methods used to detect these objects from the 60,000 Y4 exposures, a process made challenging by the absence of the few-hour repeat observations employed by TNO-optimized surveys. Newly developed techniques include: transient/moving object detection by comparison of single-epoch catalogs to catalogs of "stacked" images; quantified astrometric error from atmospheric turbulence; new software for detecting TNO linkages in a temporally sparse transient catalog, and for estimating the rate of spurious linkages; use of faint stars to determine the detection efficiency versus magnitude in all exposures. Final validation of the reality of linked orbits uses a new "sub-threshold confirmation" test, wherein we demand the object be detectable in a stack of the exposures in which the orbit indicates an object should be present, but was not individually detected. This catalog contains all validated TNOs which were detected on >= 6 unique nights in the Y4 data, and is complete to r less than or similar to 23.3 mag with virtually no dependence on orbital properties for bound TNOs at distance 30 au d 0.3 mag more depth, and arcs of >4 yr for nearly all detections.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Trees, forests and water: Cool insights for a hot world
Forest-driven water and energy cycles are poorly integrated into regional, national, continental and global decision-making on climate change adaptation, mitigation, land use and water management. This constrains humanity’s ability to protect our planet’s climate and life-sustaining functions. The substantial body of research we review reveals that forest, water and energy interactions provide the foundations for carbon storage, for cooling terrestrial surfaces and for distributing water resources. Forests and trees must be recognized as prime regulators within the water, energy and carbon cycles. If these functions are ignored, planners will be unable to assess, adapt to or mitigate the impacts of changing land cover and climate. Our call to action targets a reversal of paradigms, from a carbon-centric model to one that treats the hydrologic and climate-cooling effects of trees and forests as the first order of priority. For reasons of sustainability, carbon storage must remain a secondary, though valuable, by-product. The effects of tree cover on climate at local, regional and continental scales offer benefits that demand wider recognition. The forest- and tree-centered research insights we review and analyze provide a knowledge-base for improving plans, policies and actions. Our understanding of how trees and forests influence water, energy and carbon cycles has important implications, both for the structure of planning, management and governance institutions, as well as for how trees and forests might be used to improve sustainability, adaptation and mitigation efforts
Evidence for color dichotomy in the primordial Neptunian Trojan population
In the current model of early Solar System evolution, the stable members of the Jovian and Neptunian Trojan populations were captured into resonance from the leftover reservoir of planetesimals during the outward migration of the giant planets. As a result, both Jovian and Neptunian Trojans share a common origin with the primordial disk population, whose other surviving members constitute today's trans-Neptunian object (TNO) populations. The cold (low inclination and small eccentricity) classical TNOs are ultra-red, while the dynamically excited “hot” (high inclination and larger eccentricity) population of TNOs contains a mixture of ultra-red and blue objects. In contrast, Jovian and Neptunian Trojans are observed to be blue. While the absence of ultra-red Jovian Trojans can be readily explained by the sublimation of volatile material from their surfaces due to the high flux of solar radiation at 5 AU, the lack of ultra-red Neptunian Trojans presents both a puzzle and a challenge to formation models. In this work we report the discovery by the Dark Energy Survey (DES) of two new dynamically stable L4 Neptunian Trojans, 2013 VX30 and 2014 UU240, both with inclinations i > 30° making them the highest-inclination known stable Neptunian Trojans. We have measured the colors of these and three other dynamically stable Neptunian Trojans previously observed by DES, and find that 2013 VX30 is ultra-red, the first such Neptunian Trojan in its class. As such, 2013 VX30 may be a “missing link” between the Trojan and TNO populations. Using a simulation of the DES TNO detection efficiency, we find that there are 162 ± 73 Trojans with Hr < 10 at the L4 Lagrange point of Neptune. Moreover, the blue-to-red Neptunian Trojan population ratio should be higher than 17:1. Based on this result, we discuss the possible origin of the ultra-red Neptunian Trojan population and its implications for the formation history of Neptunian Trojans.</p
Discovery and dynamical analysis of an extreme trans-neptunian object with a high orbital inclination
We report the discovery and dynamical analysis of 2015 BP519, an extreme trans-Neptunian object (TNO) detected by the Dark Energy Survey at a heliocentric distance of 55 au, perihelion of ∼36 au, and absolute magnitude Hr= 4.3. The current orbit, determined from a 1110 day observational arc, has a semimajor axis a ≈ 450 au, eccentricity e ≈ 0.92, and inclination i ≈ 547deg;. With these orbital elements, 2015 BP519is the most extreme TNO discovered to date, as quantified by the reduced Kozai action, , which is a conserved quantity at fixed semimajor axis a for axisymmetric perturbations. We discuss the orbital stability and evolution of this object and find that, under the influence of the four known giant planets, 2015 BP519displays rich dynamical behavior, including rapid diffusion in semimajor axis and more constrained variations in eccentricity and inclination. We also consider the long-term orbital stability and evolutionary behavior within the context of the Planet Nine hypothesis and find that 2015 BP519adds to the circumstantial evidence for the existence of this proposed new member of the solar system, as it would represent the first member of the population of high-i, π-shepherded TNOs
- …