18 research outputs found

    Phylogeographical Analyses of a Relict Fern of Palaeotropical Flora (Vandenboschia speciosa): Distribution and Diversity Model in Relation to the Geological and Climate Events of the Late Miocene and Early Pliocene

    Get PDF
    Samira Ben-Menni Schuler was granted a predoctoral grant (F.P.U. program) from the Spanish Government. Hammadi Hamza was granted by a postdoctoral fellowship (Erasmus Mundus-Al Idrisi II scholarship) from the European Union. The authors thank all those people and institutions that facilitated or helped in the collection of samples (in alphabetical order: angel Banares, Antonio Delgado, Brother Anthony, Government of Ireland, Elizabeth Ojeda, Emer Ni Dhuill, Gobierno de Canarias, Ibai Olariaga-Ibarguren, Inaki Sanz-Azkue, Junta de Andalucia, Kristyna Hanuova, Miguel Perez-Gutierrez, Parque Nacional de Garajonay, Ranger Brian Duffy, Sito Chinea, Yves Krippel). We also thank Ana Garcia-Garcia for technical assistance in SDM analysis. This research was funded by the Regional Andalusian Government, grant number P10-RNM-6198.Fern phylogeographic studies have mostly focused on the influence of the Pleistocene climate on fern distributions and the prevalence of long-distance dispersal. The effect of pre-Pleistocene events on the distributions of fern species is largely unexplored. Here, we elucidate a hypothetical scenario for the evolutionary history of Vandenboschia speciosa, hypothesised to be of Tertiary palaeotropical flora with a peculiar perennial gametophyte. We sequenced 40 populations across the species range in one plastid region and two variants of the nuclear gapCp gene and conducted time-calibrated phylogenetic, phylogeographical, and species distribution modelling analyses. Vandenboschia speciosa is an allopolyploid and had a Tertiary origin. Late Miocene aridification possibly caused the long persistence in independent refugia on the Eurosiberian Atlantic and Mediterranean coasts, with the independent evolution of gene pools resulting in two evolutionary units. The Cantabrian Cornice, a major refugium, could also be a secondary contact zone during Quaternary glacial cycles. Central European populations resulted from multiple post-glacial, long-distance dispersals. Vandenboschia speciosa reached Macaronesia during the Pliocene–Pleistocene, with a phylogeographical link between the Canary Islands, Madeira, and southern Iberia, and between the Azores and northwestern Europe. Our results support the idea that the geological and climate events of the Late Miocene/Early Pliocene shifted Tertiary fern distribution patterns in Europe.Spanish Government European Commission(Erasmus Mundus-Al Idrisi II scholarship) from the European Union - Regional Andalusian Government P10-RNM-619

    Influence of the Quaternary Glacial Cycles and the Mountains on the Reticulations in the Subsection Willkommia of the Genus Centaurea

    Get PDF
    Late Neogene and Quaternary climatic oscillations have greatly shaped the genetic structure of the Mediterranean Basin flora, with mountain plant species tracking warm interglacials/cold glacials by means of altitudinal shifts instead of broad latitudinal ones. Such dynamics may have enhanced population divergence but also secondary contacts. In this paper, we use a case example of subsection Willkommia of Centaurea (comprising three narrowly distributed endemic species, Centaurea gadorensis, C. pulvinata, and C. sagredoi) to test for reticulate evolution and recurrent hybridizations between nearby populations. For this, we combine analyses of genetic diversity and structuring, gene flow and spatial correlation, and ecological niche modeling. Our results support the contention that the current genetic structure of the three species is the result of historical gene flow at sites of secondary contact during the glacial periods, followed by isolation after the retraction of populations to the middle-upper areas of the mountains during the interglacial periods. The extent and direction of the gene flow was determined largely by the location of the populations on mountainsides oriented toward the same valley or toward different valleys, suggesting the intermountain valleys as the areas where secondary contacts occurred

    INP1 involvement in pollen aperture formation is evolutionarily conserved and may require species-specific partners

    Get PDF
    Pollen wall exine is usually deposited non-uniformly on the pollen surface, with areas of low exine deposition corresponding to pollen apertures. Little is known about how apertures form, with the novel Arabidopsis INP1 (INAPERTURATE POLLEN1) protein currently being the only identified aperture factor. In developing pollen, INP1 localizes to three plasma membrane domains and underlies formation of three apertures. Although INP1 homologs are found across angiosperms, they lack strong sequence conservation. Thus, it has been unclear whether they also act as aperture factors and whether their sequence divergence contributes to interspecies differences in aperture patterns. To explore the functional conservation of INP1 homologs, we used mutant analysis in maize and tested whether homologs from several other species could function in Arabidopsis. Our data suggest that the INP1 involvement in aperture formation is evolutionarily conserved, despite the significant divergence of INP1 sequences and aperture patterns, but that additional species-specific factors are likely to be required to guide INP1 and to provide information for aperture patterning. To determine the regions in INP1 necessary for its localization and function, we used fragment fusions, domain swaps, and interspecific protein chimeras. We demonstrate that the central portion of the protein is particularly important for mediating the species-specific functionality.Funding was provided to AAD by the US National Science Foundation (MCB-1517511) and to VNSS by the Spanish Ministry of Economy and Competitiveness (CGL2015-70290-P). PL was supported by the China Scholarship Council. SB-MS was supported by the University of Granada, Spain (grant Cei BioTic). We thank the Arabidopsis Biological Resource Center (OSU) and the Maize Genetics Cooperation Stock Center (USDA/ ARS) for seed stocks, Priscila Rodriguez Garcia (OSU) for help with characterizing Arabidopsis–tomato INP1 chimeras, and Jay Hollick (OSU) for advice on all things maize

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V

    Identification of Candidate Genes Involved in the Determinism of Pollen Grain Aperture Morphology by Comparative Transcriptome Analysis in Papaveraceae

    Get PDF
    In the last decade, certain genes involved in pollen aperture formation have been discovered. However, those involved in pollen aperture shape remain largely unknown. In Arabidopsis, the interaction during the tetrad development stage of one member of the ELMOD protein family, ELMOD_E, with two others, MCR/ELMOD_B and ELMOD_A, can change the morphology of apertures from colpus (elongated) to pore (round). Here, comparative transcriptome analysis is used to identify candidate genes involved in the determination of pollen aperture morphology in Papaveraceae (order Ranunculales). Furthermore, the role of ELMOD genes in the genetic determinism of aperture shape was tested by comparative analysis of their expression levels using RNA-seq data and RT-qPCR. Two pairs of species belonging to two different subfamilies were used. Within each pair, one species has colpate pollen and the other porate (Fumarioideae—Dactylicapnos torulosa, 6-colpate, and Fumaria bracteosa, pantoporate; Papaveroideae—Eschsholzia californica, 5–7 colpate, and Roemeria refracta, 6-porate). The transcriptomes were obtained at the tetrad stage of pollen development. A total of 531 DEGs were found between the colpate and porate pollen species groups. The results from RNA-seq and RT-qPCR indicate that pollen aperture shape is not determined by the relative expression levels of ELMOD family genes in Papaveraceae. However, genes related to callose wall formation or cytoskeleton organisation were found, these processes being involved in pollen aperture formation. In addition, transcriptomes from anthers with pollen during the tetrad stage of three species (D. torulosa, R. refracta, and F. bracteosa) were obtained for the first time. These data will be available for further studies in the field of floral evolution and development

    Macaronesia Acts as a Museum of Genetic Diversity of Relict Ferns: The Case of Diplazium caudatum (Athyriaceae)

    No full text
    Macaronesia has been considered a refuge region of the formerly widespread subtropical lauroid flora that lived in Southern Europe during the Tertiary. The study of relict angiosperms has shown that Macaronesian relict taxa preserve genetic variation and revealed general patterns of colonization and dispersal. However, information on the conservation of genetic diversity and range dynamics rapidly diminishes when referring to pteridophytes, despite their dominance of the herbaceous stratum in the European tropical palaeoflora. Here we aim to elucidate the pattern of genetic diversity and phylogeography of Diplazium caudatum, a hypothesized species of the Tertiary Palaeotropical flora and currently with its populations restricted across Macaronesia and disjunctly in the Sierras de Algeciras (Andalusia, southern Iberian Peninsula). We analysed 12 populations across the species range using eight microsatellite loci, sequences of a region of plastid DNA, and carry out species-distribution modelling analyses. Our dating results confirm the Tertiary origin of this species. The Macaronesian archipelagos served as a refuge during at least the Quaternary glacial cycles, where populations of D. caudatum preserved higher levels of genetic variation than mainland populations. Our data suggest the disappearance of the species in the continent and the subsequent recolonization from Macaronesia. The results of the AMOVA analysis and the indices of clonal diversity and linkage disequilibrium suggest that D. caudatum is a species in which inter-gametophytic outcrossing predominates, and that in the Andalusian populations there was a shift in mating system toward increased inbreeding and/or clonality. The model that best explains the genetic diversity distribution pattern observed in Macaronesia is, the initial and recurrent colonization between islands and archipelagos and the relatively recent diversification of restricted area lineages, probably due to the decrease of favorable habitats and competition with lineages previously established. This study extends to ferns the concept of Macaronesia archipelagos as refugia for genetic variation
    corecore