30 research outputs found

    Complementary Ionization Techniques for the Analysis of Scotch Whisky by High Resolution Mass Spectrometry

    Get PDF
    Fourier transform mass spectrometry (FTMS) is widely used to characterize the chemical complexity of mixtures, such as natural organic matter (NOM), petroleum, and agri-food products (including Scotch whisky). Although electrospray ionization (ESI) is by far the most widely used ionization source in these studies, other ionization techniques are available and may offer complementary information. In a recent study, we found matrix free laser desorption/ionization (LDI) to be effective for the analysis of Suwannee river fulvic acid (SRFA), and to provide complementary chemical insights. In this study, LDI along with atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI) were compared to ESI for the analysis of Scotch whisky. High mass accuracy (54 ppb, mean) allowed for the assignment of 86% of peaks, with 3993 unique molecular formulas identified from four representative samples analyzed. All four ionization techniques, performed in negative mode, identified thousands of formulas. Many were unique to each ionization source, while 699 formulas were common to all techniques. Ions were identified in both deprotonated and radical anion forms. Our study highlights the importance of a multi-ionization source approach; we recommend that analysis of complex mixtures, especially novel ones, should not be limited solely to ESI

    Structure of the sialylated L3 lipopolysaccharide of Neisseria meningitidis.

    Get PDF
    The L3 immunotype lipopolysaccharide (LPS) of Neisseria meningitidis was subjected to degradation procedures, which produced a number of different oligosaccharide fragments. The high resolution 1H and 13C NMR spectroscopic analyses of these oligosaccharides yielded structural information on a number of different regions of the LPS. For example, from one oligosaccharide, it was found that the endogenous sialylation of the meningococcal LPS occurs at O-3 of the terminal beta-D-galactopyranosyl residue of its lacto-N-neotetraose antenna in the alpha-D-configuration. From another, it was also established that the dominant structural feature responsible for L3 epitope specificity is the presence of a phosphorylethanolamine substituent at O-3 of the penultimate heptopyranosyl residue of its other antenna. In addition from information obtained with another oligosaccharide the structure of the 3-deoxy-D-manno-octulosonic acid disaccharide region of the L3 LPS was also elucidated. From all the above cumulative data plus some published data, it was then possible to reconstruct the complete structure of the entire native L3 LPS

    Structural and immunochemical characterization of the type VIII group B Streptococcus capsular polysaccharide.

    Get PDF
    The type VIII capsular polysaccharide has been isolated and purified from a newly described strain of group B Streptococcus which is a leading cause of sepsis and neonatal meningitis in Japan. The polysaccharide contains D-glucose, D-galactose, L-rhamnose, and sialic acid in the molar ratio 1:1:1:1. By means of high resolution 1H nuclear magnetic resonance (1H NMR), 13C NMR, and homo- and heterocorrelated NMR, the repeating unit structure of the type VIII polysaccharide was delineated as the following, [formula: see text] Enzymatic studies established this polysaccharide as the first from which sialic acid, linked to a branched beta-D-galactopyranosyl residue, is known to be removed by bacterial neuraminidase

    Structural basis for complement factor H-linked age-related macular degeneration

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Nearly 50 million people worldwide suffer from age-related macular degeneration (AMD), which causes severe loss of central vision. A single-nucleotide polymorphism in the gene for the complement regulator factor H (FH), which causes a Tyr-to-His substitution at position 402, is linked to approximately 50% of attributable risks for AMD. We present the crystal structure of the region of FH containing the polymorphic amino acid His402 in complex with an analogue of the glycosaminoglycans (GAGs) that localize the complement regulator on the cell surface. The structure demonstrates direct coordination of ligand by the disease-associated polymorphic residue, providing a molecular explanation of the genetic observation. This glycan-binding site occupies the center of an extended interaction groove on the regulator's surface, implying multivalent binding of sulfated GAGs. This finding is confirmed by structure-based site-directed mutagenesis, nuclear magnetic resonance-monitored binding experiments performed for both H402 and Y402 variants with this and another model GAG, and analysis of an extended GAG-FH complex.B. Prosser is funded by the Wellcome Trust Structural Biology Training Program (075415/Z/04/Z). S. Johnson and P. Roversi were funded by grants to S.M. Lea from the Medical Research Council (MRC) of the United Kingdom (grants G0400389 and G0400775). D. Uhrin and P.N. Barlow were funded by the Wellcome Trust (078780/ Z/05/Z). S.J. Clark was funded by an MRC Doctoral Training Account (G78/7925), and R.B. Sim and A.J. Day were funded by MRC core funding to the MRC Immunochemistry Unit

    Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of ascaris reveals a novel fold and two discrete lipid-binding sites

    Get PDF
    Parasitic nematode worms cause serious health problems in humans and other animals. They can induce allergic-type immune responses, which can be harmful but may at the same time protect against the infections. Allergens are proteins that trigger allergic reactions and these parasites produce a type that is confined to nematodes, the nematode polyprotein allergens (NPAs). These are synthesized as large precursor proteins comprising repeating units of similar amino acid sequence that are subsequently cleaved into multiple copies of the allergen protein. NPAs bind small lipids such as fatty acids and retinol (Vitamin A) and probably transport these sensitive and insoluble compounds between the tissues of the worms. Nematodes cannot synthesize these lipids, so NPAs may also be crucial for extracting nutrients from their hosts. They may also be involved in altering immune responses by controlling the lipids by which the immune and inflammatory cells communicate. We describe the molecular structure of one unit of an NPA, the well-known ABA-1 allergen of Ascaris and find its structure to be of a type not previously found for lipid-binding proteins, and we describe the unusual sites where lipids bind within this structur

    The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro

    Get PDF
    Plasmids, conjugative transposons and phage frequently encode anti-restriction proteins to enhance their chances of entering a new bacterial host that is highly likely to contain a Type I DNA restriction and modification (RM) system. The RM system usually destroys the invading DNA. Some of the anti-restriction proteins are DNA mimics and bind to the RM enzyme to prevent it binding to DNA. In this article, we characterize ArdB anti-restriction proteins and their close homologues, the KlcA proteins from a range of mobile genetic elements; including an ArdB encoded on a pathogenicity island from uropathogenic Escherichia coli and a KlcA from an IncP-1b plasmid, pBP136 isolated from Bordetella pertussis. We show that all the ArdB and KlcA act as anti-restriction proteins and inhibit the four main families of Type I RM systems in vivo, but fail to block the restriction endonuclease activity of the archetypal Type I RM enzyme, EcoKI, in vitro indicating that the action of ArdB is indirect and very different from that of the DNA mimics. We also present the structure determined by NMR spectroscopy of the pBP136 KlcA protein. The structure shows a novel protein fold and it is clearly not a DNA structural mimic

    Order in disorder:solution and solid-state studies of [(M2M5II)-M-III] wheels (M-III = Cr, Al; M-II = Ni, Zn)

    Get PDF
    A family of heterometallic Anderson-type ‘wheels’ of general formula [MIII2MII5(hmp)12](ClO4)4 (where MIII = Cr or Al and MII = Ni or Zn giving [Cr2Ni5] (1), [Cr2Zn5] (2), [Al2Ni5] (3) and [Al2Zn5] (4); hmpH = 2-pyridinemethanol) have been synthesised solvothermally. The metallic skeleton common to all structures describes a centred hexagon with the MIII sites disordered around the outer wheel. The structural disorder has been characterised via single crystal X-ray crystallography, 1–3D 1H and 13C solution-state NMR spectroscopy of the diamagnetic analogue (4), and solid-state 27Al MAS NMR spectroscopy of compounds (3) and (4). Alongside ESI mass spectrometry, these techniques show that structure is retained in solution, and that the disorder is present in both the solution and solid-state. Solid-state dc susceptibility and magnetisation measurements on (2) and (3) reveal the Cr–Cr and Ni–Ni exchange interactions to be JCr–Cr = −1 cm−1 and JNi–Ni,r = −5 cm−1, JNi–Ni,c = 10 cm−1. Fixing these values allows us to extract JCr–Ni,r = −1.2 cm−1, JCr–Ni,c = 2.6 cm−1 for (1), the exchange between adjacent Ni and Cr ions on the ring is antiferromagnetic and between Cr ions on the ring and the central Ni ion is ferromagnetic.EKB thanks the EPSRC for funding (EP/N01331X/1, EP/P025986/1). UGN acknowledges funding from the Villum Young Investigator (VKR022364) and the Danish Council for Independent Research – Natural Sciences (DFF – 7014-00198). ME thanks MINECO for funding (MAT2015-68204-R)Peer reviewe
    corecore