Structure of the Sialylated L3 Lipopolysaccharide of *Neisseria meningitidis**

(Received for publication, December 9, 1992, and in revised form, March 25, 1993)

Viliam Pavliak‡, Jean-Robert Brisson, Francis Michon, Dušan Uhrín§, and Harold J. Jennings¶

From the Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada

The L3 immunotype lipopolysaccharide (LPS) of Neisseria meningitidis was subjected to degradation procedures, which produced a number of different oligosaccharide fragments. The high resolution ¹H and ¹³C NMR spectroscopic analyses of these oligosaccharides yielded structural information on a number of different regions of the LPS. For example, from one oligosaccharide, it was found that the endogenous sialylation of the meningococcal LPS occurs at O-3 of the terminal β -D-galactopyranosyl residue of its lacto-Nneotetraose antenna in the α -D-configuration. From another, it was also established that the dominant structural feature responsible for L3 epitope specificity is the presence of a phosphorylethanolamine substituent at O-3 of the penultimate heptopyranosyl residue of its other antenna. In addition from information obtained with another oligosaccharide the structure of the 3-deoxy-D-manno-octulosonic acid disaccharide region of the L3 LPS was also elucidated. From all the above cumulative data plus some published data, it was then possible to reconstruct the complete structure of the entire native L3 LPS.

Neisseria meningitidis can be serologically divided into at least 12 immunotypes based on its LPS¹ (1-3). The LPS epitopes are located in the glycose moieties of the LPS (4), the latter having been identified as small oligosaccharides of the type normally associated with LPS of the R-type (5). Although heterogeneous, structural studies on the largest of the oligosaccharides obtained from the L1 and L6 (6), L3 (5), L5 (7), and L2 (8) immunotypes have identified regions of structural difference and structural similarity, which account for both the immunotype specificity and cross-reactivity exhibited by the meningococcal LPS (2, 4). Heterogeneity even exists among the oligosaccharides obtained from the LPS of

§ Permanent address: Inst. of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia 84238.

14146

individual meningococci, and the structural basis of this heterogeneity has been elucidated. Heterogeneity can be generated by the addition or deletion of glycose units (7), as well as by the presence and location of phosphorylethanolamine substituents (6, 8) and possibly O-acetyl groups (7). Heterogeneity can also be generated by the endogenous sialylation of the meningococcal LPS (9, 10), in which sialylation occurs at the terminal galactopyranosyl residue of the lacto-N-neotetraose antenna of the oligosaccharide (10). This paper describes work that resulted in the structural determination of the complete sialylated L3 LPS of N. meningitidis.

EXPERIMENTAL PROCEDURES

Materials—Group Y N. meningitidis 406Y (NRCC 4030, serotype L3) was grown in Frantz medium in a New Brunswick Scientific 28L Microferm fermentor. The cells were grown at 37 °C for 18 h with stirring (200 rpm) and 20 liters/min of aeration. Isolation and purification of LPS was done as follows: 412 g (wet weight) bacterial cells were suspended in 600 ml of 40 mM sodium phosphate buffer, pH 7.0, containing 5 mM sodium EDTA and 0.05% sodium azide. Cells were treated with lysozyme (Sigma, 51100 units/mg), and LPS was extracted with 45% phenol (final concentration) at 68–70 °C and finally purified by gel filtration according to procedures described by Gu and Tsai (11).

Analytical Methods—Solutions were evaporated under diminished pressure below 40 °C in a rotary evaporator. Gel filtration was done on columns (1.6×90 cm) of Bio-Gel P4 (400-mesh) and P2 (Bio-Rad) at 20 °C using pyridine acetate buffer (0.02 M, pH 5.4) at a flow rate of approximately 12 ml/h. Individual fractions were monitored using a Waters R403 differential refractometer. Combined gas-liquid chromatography-mass spectrometry (GLC-MS) was carried out on a Jeol EX505H instrument using a capillary column (0.25 mm $\times 20$ m) of fused silica DB17 (J and W Scientific) employing an ionization potential of 70 eV.

Nuclear Magnetic Resonance—All NMR experiments were performed on a Bruker AMX 500 spectrometer using a broad band probe with ¹H coil nearest to the sample. ¹³C, ¹H, and ³¹P NMR spectra were recorded at 295 and 340 K in 5-mm tubes at concentrations of 1-8 mg of oligosaccharide in 0.5 ml of D₂O at neutral pH. Phosphoric acid (25%) was used as an external chemical shift reference for ³¹P NMR (σ 0.00 ppm). Dioxane was used as an external standard (σ 67.4 ppm) for ¹³C. The proton chemical shifts in deuterium oxide (D₂O) are expressed relative to the HOD signal (4.81 ppm at 295 K, 4.348 ppm at 340 K). All experiments were carried out without sample spinning.

The two-dimensional experiments (COSY, TOCSY, NOESY, HMQC) were carried out as described previously (12). The ¹H detected, ¹H-¹³C correlated two-dimensional HMQC-TOCSY experiment was performed according to Lerner and Bax (13). Selective onedimensional TOCSY experiments were employed using a half-gaussian pulse with spin-lock mixing times of 30-270 ms (14). If the transfer of magnetization in TOCSY was not possible due to small coupling constants, the spin-lock period was followed by a nonselective COSY step in a relayed TOCSY (15).

Chemical Methods—De-O-acylation of LPS was performed as follows. To remove the fatty acids the LPS (50 mg) was dried overnight over P_2O_5 , dissolved in anhydrous hydrazine (5 ml), and stirred for 30 min. at 37 °C. After the addition of chilled (-20 °C) acetone, the precipitate was collected by centrifugation, washed with acetone,

^{*} This is National Research Council of Canada Publication 34324. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[‡] Present address: Univax Biologics Inc., 12280 Wilkins Ave., Rockville, MD 20892.

[¶] To whom correspondence should be addressed.

¹ The abbreviations used are: LPS, lipopolysaccharide; KDO, 3deoxy-*D*-manno-octulosonic acid; NOE, nuclear Overhauser effect; LPS-OH, de-O-acylated LPS; GLC-MS, gas-liquid chromatographymass spectrometry; COSY, correlated spectroscopy; NOESY, NOE spectroscopy.

FIG. 1. Structures of the different oligosaccharides (1-5) obtained when the L3 LPS was subjected to different degradation procedures.

TABLE I Methylation analysis of oligosaccharide cores derived from the L3 lipopolysaccharide

	Molar ratios ^e			
Methylated sugar	1	2		
2,3,4,6-Me₄Gal	1.00	1.00		
2,4,6-Me ₃ Gal	0.35	1.05		
2,3,6-Me ₃ Glc	1.00	0.85		
3.4,6,7-Me₄Hep		0.80		
3,4,6-Me ₃ GlcNMeAc	0.60	0.65		
2.6,7-Me ₃ Hep	0.80	0.85		
4.6,7-Me ₃ Hep	0.5			
3,6-Me ₂ GlcNMeAc	0.55	0.60		

^a Upon hydrolysis, removal of phosphatidylethanolamine located at O-3 of the heptosyl residue occurred.

^b KDO was detected in 1 as its 1,2,4,6,7,8-hexamethyl-3-deoxy-5-OAc derivative (5).

 $^{\rm c}$ 1, acetic acid released core; 2, dephosphorylated acetic acid released core.

dissolved in water (5 mL), reprecipitated with acetone, dried, dissolved in water, and lyophilized yielding 36.4 mg of de-O-acylated LPS (LPS-OH) (73%).

The core oligosaccharides were obtained by heating the LPS (10 mg/ml) in 1% acetic for 2 h at 100 °C. The insoluble lipid A was removed from the hydrolysis mixture by centrifugation at 10,000 rpm. The acid hydrolyzed oligosaccharides (yield $\approx 50\%$) were then purified by gel filtration on Bio-Gel P4 using 0.02 M pyridinium acetate buffer, pH 5.4, as eluent yielding one main oligosaccharide 1 with $K_{\rm av} = 0.37$.

Dephosphorylation of the de-O-acylated LPS (LPS-OH) and acetic acid released core oligosaccharides was accomplished by treating them with aqueous HF at 4 °C for 72 h (6). The excess of HF in the core oligosaccharide sample was removed in a vacuum, over NaOH pellets at 4 °C. In the case of LPS-OH, HF was removed by dialysis against water (5 × 100 ml).

De-N-acylation of reduced LPS-OH was performed in anhydrous hydrazine at 85 °C for 7 days as described by Holst *et al.* (16). Re-Nacetylation of the product was achieved by treating the sample with acetic anhydride in 5% (w/v) NaHCO₃(aqueous) for 1 h at room temperature.

Determination of Sialic Acid by Treatment of the LPS-OH with Neuraminidase—2 mg of LPS-OH dissolved suspended in 1 ml of 25 mM sodium acetate pH 6.8 was treated with 10 millunits of neuraminidase (Genzyme, Cambridge, MA) at 37 °C for 2 h as previously described (10). An additional 10 milliunits of enzyme was added, the mixtures were incubated again at 37 °C overnight and filtered with a $0.22 \cdot \mu m$ pore size membrane, the filtrate was loaded onto a Sep-Pak C18 cartridge (Waters, Milford, CA), and the cartridge was washed with water. The eluent and washes were pooled and lyophilized. The same steps were used for the control, using a heat-inactivated enzyme. Analysis of sialic acid was done by high performance anion-exchange chromatography. The residue dissolved in 500 μ l of H₂O was analyzed for sialic acid with a Carbo Pac PA1 column (4 × 250 mm) and pulsed amperometric detection (Dionex Corp., Sunnyvale, CA). Eluant A consisted of 150 mM NaOH; eluent B consisted of 150 mM NaOH + 1 M NaOAc. Eluting conditions were as follows: 5 min of isocratic 95% A + 5% B, then gradient increasing concentration of B by 1.58% per minute, flow rate 1 ml/min. Retention time for sialic acid was 11.4 min. Xylose was used as internal standard. Retention time was 3.64 min.

Determination of Sialic Acid by GLC-MS-1 mg of de-O-acylated LPS was methanolyzed in 2 ml of MeOH, 2 N HCl at 80 °C for 2 h. Released glycose residues were trimethylsilylated, and the mixture was analyzed by GLC-MS (17).

RESULTS AND DISCUSSION

The application of different degradation procedures on the native L3 meningococcal LPS produced a number of its constituent oligosaccharide fragments, of which the structure of five (1, 2, 3, 4, and 5) are shown in Fig. 1. Using this and other structural information, it was then possible to reconstruct a composite structure of the entire L3 LPS. The presence of sialic acid in the LPS was first detected by analysis of a water-soluble preparation in which only the ester-linked fatty acid were removed from the LPS by mild hydrazinolysis (LPS-OH). LPS-OH was treated with either intact or heatinactivated neuraminidase and analyzed by strong anionexchange chromatography with pulsed amperometric detection using xylose and sialic acid as standards. The neuraminidase treated LPS-OH gave a single peak with the same retention time as that of sialic acid (11.16 min), whereas an identical sample of LPS-OH treated with heat-inactivated neuraminidase gave no detectable peaks. The presence of sialic acid was also confirmed by GLC-MS of its pertrimethylsilyl methyl glycoside following methanolysis of the native LPS (17).

In order to obtain structural information on the basic core oligosaccharide of L3 serotype, the LPS was hydrolyzed with 1% acetic acid at 100 °C. Subsequent elution of the hydrolysate from a Bio-Gel P4 column afforded one major oligosac-

FIG. 2. ¹H NMR spectrum (500 MHz, 340 K) of oligosaccharide 3.

charide (1) with $K_{\rm av} = 0.37$. A further constituent oligosaccharide was produced by the removal of the phosphorylethanolamine substituent from 1 to yield oligosaccharide 2 (Fig. 1). The chemical shifts of the protons of the individual residues of 1 and 2 were assigned by two-dimensional NMR methods (12) as described below for oligosaccharides 3 and 4, and are listed in Table II.

The ³¹P NMR spectrum of 1 exhibited one sharp signal at +0.19 ppm, indicating that 1 was phosphorylated. The presence of a doublet at 40.8 ppm (${}^{3}J_{C,P} = 8.0$ Hz) in the ${}^{13}C$ NMR spectrum of 1 and a signal at 3.32 ppm in the ¹H NMR of 1 characteristic of a CH₂NH₂ group (6) indicated the presence of a phosphorylethanolamine substituent (data not shown). From these signals, the chemical shifts of the CH₂O group of phosphorylethanolamine in the ${}^{13}C$ and ${}^{1}H$ NMR spectra (σ 62.5 and 4.18 ppm, respectively) were assigned using ¹H-¹³C two-dimensional HMQC-TOCSY (data not shown). The ¹H-³¹P correlated spectrum (HMQC) of 1 showed only one crosspeak at σ 4.18 ppm in the ¹H dimension assigned to H-3 of heptose f and CH₂O of phosphorylethanolamine. Dephosphorylation of 1 caused an upfield shift in the H-3 signal to σ 4.06 ppm (Table II), confirming substitution of O-3 of \mathbf{f} with phosphorylethanolamine. Removal of this substituent afforded oligosaccharide 2 previously identified, and structurally determined using mainly chemical procedures (5), as the L3 core determinant common to a number of different strains of N. meningitidis. The location of phosphorylethanolamine was also confirmed by methylation analysis of oligosaccharides 1 and 2. The results are shown in Table I and indicate that the 4,6,7-trimethyl-heptopyranosyl residue present in phosphorylated oligosaccharide 1 was replaced by a 3,4,6,7tetramethyl-heptopyranosyl residue in 2. This confirms the localization of the phosphorylethanolamine group in 1 at O-3 of residue f. Sialic acid was not detected in oligosaccharide 1 demonstrating that it is quantitatively removed when subjected to these hydrolysis conditions.

To obtain information about the structure of the KDO region of the L3 LPS, the aforementioned LPS-OH was dephosphorylated, reduced, and de-*N*-acylated. Gel filtration on a Bio-Gel P2 column afforded two distinct oligosaccharides 3 and 4. The ¹H NMR spectrum (Fig. 2) of the faster moving oligosaccharide 3 showed eight signals in the anomeric region (5.6-4.5 ppm), each integrating for one anomeric proton (Table II). These signals were assigned to residues **a**-**g** and similar signals in the spectra of 1 and 2 indicated that they also contained the same residues. In addition, the spectrum contained signals for the geminal protons of two 3-deoxy-Dmanno-octulosonic acids (KDO): 2.01 ppm (1H, t, H-3ax of residue **h**), 1.84 ppm (1H, t, H-3ax of residue **i**), 2.18 ppm (2H, dd, H-3eq of **h** and **i**). A doublet in the anomeric region at 4.77 ppm (³J_{1,2} = 8.38 Hz) of β -linked 2-amino-2-deoxyglucose (residue **j**) and signals for the borohydride-reduced (open chain) form of 2-amino-2-deoxy- β -D-glucopyranosyl residue (**k**) are indicative of the remnants of the lipid A structure of the native LPS (18).

Assignments of the proton resonances for 3 and 4 are listed in Table II and the carbon resonances for 3 in Table III. The nuclear Overhauser effects were used to obtain sequence information of residues in 3 and for determination of their anomeric configuration, since the absolute configuration of the component sugars was known (5). Cross-sections for the anomeric protons from two-dimensional NOE spectrum are shown in Fig. 3. Cross-peaks of H-1-H-3 (a), H-1-H-5 (a), H-1-H-3 (c), and H-1-H-5 (c) indicated that the D-galactopyranosyl residues a and c are in the β -D-galacto configuration. Residue \mathbf{a} is linked to O-4 of \mathbf{b} and residue \mathbf{c} is linked to O-4 of d. H-1 (b) and H-1 (j) showed NOEs with H-3 (b), H-5 (b), H-3 (c) and H-3 (j), H-5 (j), H-6 (k), respectively, confirming the β -configuration of 2 amino-2-deoxy-D-glucopyranosyl residues **b** and **j** and indicating that residue **b** is linked to O-3 of c and residue j to O-6 of residue k. NOEs of H-1 (d) to H-3 (d), H-5 (d), and H-4 (e) indicated that the D-glucopyranosyl residue **d** has the β -configuration and furthermore is linked to O-4 of residue e. H-1 of residues e, f, and g showed NOEs to corresponding H-2 but not to H-5 or H-3, indicating the α -configuration of D-glycero-D-mannoheptopyranosyl residues e and f and 2-amino-2-deoxy-D-glucopyranosyl residue g (Fig. 1). The NOEs of H-1 (e) to H-5 (h) and to H-7 (h) indicated that e is linked to O-5 of one of the KDO residue (h). These NOEs are typical of an α -D-

Sugar unit atom 1 2 3 4 Sugar unit atom 1 2 3 4 Residue a β -D-Glap-(1-+ 1 4.52 4.50 Keidue g β -D-Glap-(1-+ 1 5.17 5.08 5.38* 5.30* 5.30* 5.30* 5.30* 5.30* 5.30* 5.30* 5.30* 5.30* 5.30* 3.38* <td< th=""><th rowspan="2">Sugar unit</th><th>Proton</th><th></th><th>Chemi</th><th>cal shifts</th><th></th><th>Cit</th><th rowspan="2">Proton atom</th><th colspan="3">Chemical shifts</th></td<>	Sugar unit	Proton		Chemi	cal shifts		Cit	Proton atom	Chemical shifts			
Residue a p-D Galp (1→ 2 1 4.52 4.50 3.59 4.50 3.59 4.50 3.59 Residue g 3.70 1 5.17 5.08 5.38* 5.33* 3.56 5.5* 3.56 3.5* 5.33* 3.5* 5.33* 5.33* 3.5* 5.33* 3.5* 6* 3.89 3.89 3.89* 3.5* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 6* 3.85* 3.85*		atom	1	2	3	4	Sugar unit		1	2	3	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Residue a	1	4.52	4.52	4.50		Residue g	1	5.17	5.08	5.38°	5.30"
$ \begin{array}{c} 3 & 3.70 & 3.60 & 3.70 \\ 4 & 3.89 & 3.98 & 3.98 \\ 5 & 3.78 & 3.78 & 3.78 & 3.78 \\ 6 & 3.76 & 3.76 & 3.75 & 3.85 \\ 6 & 3.76 & 3.76 & 3.75 & 3.85 \\ 6 & 3.76 & 3.76 & 3.75 & 3.85 \\ 6 & 3.76 & 3.76 & 3.75 & 3.85 \\ 6 & 3.76 & 3.76 & 3.75 & 3.85 \\ 6 & 3.76 & 3.76 & 3.75 & 3.85 \\ 6 & 3.76 & 3.76 & 3.75 & 3.85 \\ 6 & 3.76 & 3.76 & 3.77 & 3.85 \\ 6 & 3.76 & 3.77 & 3.85 \\ 7 & 3.86 & 3.89 & 3.89 & 3.89 & 3.99 \\ - + +). 9 0.1cpNAc. (1 - + 2 & 3.82 & 3.81 & 3.14^{+} \\ 7 & 3 & 7.7 & 3.85 & 3.85 & 3.88^{+} \\ 6 & 3.76 & 3.77 & 3.77 & 3.85 \\ 7 & 3.86 & 3.89 & 3.88 & 3.89^{+} \\ 7 & 3.86 & 3.89 & 3.88 & 3.89^{+} \\ 7 & 3.86 & 3.89 & 3.88 & 3.89^{+} \\ 7 & 3.86 & 3.86 & 3.66 & 3.20 \\ 7 & 3.87 & 3.77 & 3.85 & - \\ 8 & -3.9.2 & -3.90 & 2.99 \\ \hline \end{array} $	β -D-Galo-(1 \rightarrow	2	3.59	3.59	3.61		α -D-GlcpNAc-(1 \rightarrow	2	3.96	3.93	3.38°	3.31°
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	h p carb (t)	3	3.70	3.69	3.70		n -	3	3.82	3.82	3.94°	3.89°
$ \begin{array}{c} 5 & 3.78 & 3.78 & 3.78 & 3.78 & 3.78 & 3.78 & 3.78 & 3.67 & 3.85 & 3.86 & 3.86 & 3.86^{\circ} & 3.78 & 3.44 & 3.86^{\circ} & 3.86^{\circ} & 3.86 & 3.86^{\circ} & $		4	3.98	3.98	3.98			4	3.57	3.56	3.56°	3.58°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	3 78	3 78	3.78			5	3.89	3.89	3.90°	3.78 ^a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6	3 76	3.75	3.85		1)	6	3.78	3.84	3.86°	3.85*
Residue b 1 4.81 4.80 4.97" NAc 2.16 2.17 →1).β.0.Cl(ppNAc-(1) 2 3.82 3.81 3.14" 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.87 3.87 4 4 4.23 4.19 2.18 2.13 2.14 2.13 2.14 2.13 2.15 4 4 4.23 4.19 2.56 3.86 3.86 3.86 3.87 3.86		6′	3.76	3.75	3.85			6'	3.86	3.89	3.90°	3.92*
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Residue b	1	4.81	4.80	4.97ª			NAc	2.16	2.17		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow	2	3.82	3.81	3.14°		Residue h	3ax			2.01	1.97
$\begin{array}{c} 4 & 3.75 & 3.73 & 3.78 \\ 5 & 3.62 & 3.63 & 3.68^{\circ} \\ 6 & 3.89 & 3.88 & 3.88 & 3.88^{\circ} \\ 6 & 3.80 & 3.88 & 3.88 & 3.88^{\circ} \\ 6 & 3.80 & 3.88 & 3.88 & 3.88^{\circ} \\ 6 & 3.80 & 3.88 & 3.88 & 3.88^{\circ} \\ 6 & 3.80 & 3.88 & 3.88 & 3.88 & 3.68 \\ 6 & 4.00 & 3.99 & 3.99^{\circ} \\ 8 & 3.66 & 3.38 \\ - 3)^{\circ} \beta \cdot D \cdot Galp \cdot (1 \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		3	3.78	3.77	3.85*		$\rightarrow 5$)- α -KDOp-(2-	3eq			2.18	2.15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	3.75	3.73	3.78°		4	4			4.23	4.19
$ \begin{array}{c} 6 & 3.89 & 3.88 & 3.88 & 3.88 \\ 6 & (40) & 3.99 & 3.99 \\ NAc & 2.08 & 2.09 \\ & NAc & 2.08 & 2.09 \\ & & & & & & & & & & & & & & & & & & $		5	3.62	3.63	3.68ª		1 1	5			4.29	4.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6	3.89	3.88	3.88ª		1) ·	6			3.68	3.65
$ \begin{array}{c} NAc & 2.08 & 2.09 & 2.09 & 3.00 & 3.01 & 3.63 \\ Residue c & 1 & 4.51 & 4.51 & 4.54 & 4.54 & 3.64 & 3.85 & 3.80 & 4.61 & 3.83 \\ -3); \beta - D \cdot Galp \cdot (1 \rightarrow) & 1 & 4.51 & 4.54 & 4.54 & 3.02 & 3.64 & 3.31 & 3.90 & 4 & 4.18 & 4.18 & 4.21 & 5 & 4.07 & 4.07 & 4.07 \\ & 3 & 3.79 & 3.79 & 3.79 & 3.89 & 3.80 & 4 & 4.18 & 4.21 & 5 & 4.07 & 4.08 & 3.76 & 3.76 & 3.75 & 3.85 & 3.86 & 3.64 & 3.31 & -6 & -6 & -6 & -6 & -6 & -6 & -6 & -$		6'	4.00	3.99	3.99*			7			3.87	3.84
$ \begin{array}{c} \operatorname{Residue c} & & & & & & & & & & & & & & & & & & $		NAC	2.08	2.09				8			3.66	3.93
Residue c 1 4.51 4.51 4.51 4.54 Residue i 3ax 1.84 1.80 3)-β-D-Galp-(1→ 2 3.64 3.65 3.80 aso aso be of the		14710	2.00	2.00				8'			4.01	3.63
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Residue c	1	4.51	4.51	4.54		Regidue i	388			1.84	1.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\rightarrow 3)- β -D-Galp-(1 \rightarrow	2	3.64	3.65	3.80		$\approx KDOn (2)$	Sec			2.18	2.13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	3	3.79	3.79	3.90		<i>a</i> - NDOp -(2→	1			4.07	4.07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4	4.18	4.18	4.21		1	4 5			4.07	4.07
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	3.82	3.82	3.82		ll.	5			9.07	2.65
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6	3.76	3.75	3.85			0			0.00	3.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		6′	3.76	3.75	3.85			8			3.96 3.95	3.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Residue d	1	4.60	5.60	4.62	4.58		8′			3.83	3.82
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\rightarrow (1)-8-D-Glep-(1)	2	3 45	3 47	3 45	3.39						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	3.67	3 69	3 73	3.52	Residue j	1			4.77	4.68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	3 53	3.52	3 64	3.31	$\rightarrow 6$)- β -D-GlcpN-(1 \rightarrow	2			3.13	3.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	3.60	3.63	3.64	3 48		3			3.69	3.58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	3 75	3 71	4.07	3 78		4			3.48	3.43
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6'	3.75 4.02	4.06	3.85	3.98		5			3.65	3.65
Residue e 1 5.13 5.10 5.29 5.24 6 5.00 5.03 5.03 →4)-L-α-D-Hepp-(1→ 2 4.14 4.15 4.16 4.12 4.07 8 9 3.82 3.77 1 4 4.30 4.28 4.27 4.27 8 6 3.82 3.77 5 4.18 4.16 4.18 4.18 4.18 4.18 9 3.58 3.58 3.90 7 3.75 3.75 3.77 3.72 4 3.75 3.76 3.79 3.72 5 3.99 4.00 7 3.65 3.68 3.68 3.67 6 3.73 3.73 3.76 7' 3.65 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 $\rightarrow2)-L-\alpha-D-Hepp-(1→$ 2 4.42 4.16 4.32 4.27 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 <	2 11		5 10	5 10	5 00	5.94		6			3.01	3.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Residue e	1	5.13	5.10	0.29	0.24		0			3.00	3.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rightarrow 4$)-L- α -D-Hepp-(1 \rightarrow	2	4.14	4.15	4.10	4.12	Residue k	1			3.82	3.77
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3	4.05	4.04	4.12	4.07	\rightarrow 6)-GlcNol	1			3.95	3.90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ť	4	4.30	4.28	4.27	4.21		2			3.58	3.58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	4.18	4.16	4.18	4.18		3			4.16	4.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	4.03	4.00	4.02	3.98		4			3.75	3.76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7	3.75	3.75	3.77	3.72		5			3.99	4.00
Residue f 1 5.54 5.40 5.45 6' 4.02 4.02 →2)-L-α-D-Hepp-(1→ 2 4.42 4.16 4.32 4.27 3 4.18 4.06 4.12 4.06 4 4.12 3.96 3.98 3.98 5 3.68 3.67 3.70 3.67 3.70 3.67 3.70 3.67 3.70 3.67 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02		7'	3.65	3.68	3.68	3.67		6			3.73	3.73
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Residue f	1	5.54	5.54	5.40	5.45		6′			4.02	4.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rightarrow 2$)-L- α -D-Hepp-(1 \rightarrow	2	4.42	4.16	4.32	4.27						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	4.18	4.06	4.12	4.06						
		4	4.12	3.96	3.98	3.98						
		5	3.68	3.68	3.68	3.68						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	4.05	4.03	4.10	4.08						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7	3.79	3.72	3.76	3.72						
CH ₂ NH ₂ 3.32 CH ₂ O 4.18		7'	3.75	3.67	3.70	3.67						
		CH ₂ NH ₂	3.32									
•		CH ₂ O	4.18									

TABLE II ¹H NMR chemical shift data for oligosaccharides derived from N. meningitidis serotype L3 lipopolysaccharide Chemical shifts are expressed relative to HOD signal (4.348 at 340 K).

^a De-N-acetylated residues.

TABLE III ¹³C NMR chemical shift data of **3**

		•
Data were measured at 340 K in D ₂ O with dioxane as external standard	l (σ 67.4	ppm).

Sugar residue	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8
(a) β -D-Galp(1 \rightarrow	103.92	72.10	73.30	69.80	76.25	62.12		
	(97.37) ^a	(72.96)	(73.78)	(69.69)	(75.93)	(61.84)		
(b) \rightarrow 4)- β -D-GlcpN(1 \rightarrow	101.80	56.87	72.30	79.60	76.10	61.27		
(c) $\rightarrow 3$)- β -D-Galp(1 \rightarrow	103.35	71.20	83.00	69.60	76.20	62.12		
· -	(97.37)	(72.96)	(73.78)	(69.69)	(75.93)	(61.84)		
(\mathbf{d}) →4)-β-D-Glcp $(1$ →	102.78	74.52	75.25	80.53	76.10	62.12		
· · · · ·	(96.84)	(75.20)	(76.76)	(70.71)	(76.76)	(61.84)		
$(\mathbf{e}) \rightarrow 4$)-L- α -D-Hepp $[3 \rightarrow](1 \rightarrow$	100.47	71.7	76.05	80.66	72.90	70.51	64.22	
	(95.5)	(72.0)	(71.9)	(67.7)	(72.5)	(70.3)	(64.4)	
$(\mathbf{f}) \rightarrow 2$)-L-α-D-Hepp $(1 \rightarrow$	101.24	80.66	71.60	68.02	72.83	70.4	64.10	
	(95.5)	(72.0)	(71.9)	(67.7)	(72.5)	(70.3)	(64.4)	
(g) α -D-GlcpN(1 \rightarrow	98.94	55.82	71.23	70.52	73.81	61.22		
$(\mathbf{h}) \rightarrow 5$)- α -KDOp- $[4 \rightarrow](2 \rightarrow$	174.87		35.20	71.16	74.2	73.91	70.82	65.20
	(176.5)	(102.5)	(35.2)	(67.4)	(67.1)	(72.5)	(70.5)	(64.2)
(i) α -KDOp(2 \rightarrow	175.33		35.75	67.44	67.40	73.91	71.22	65.30
	(176.5)	(102.5)	(35.2)	(67.4)	(67.1)	(72.5)	(70.5)	(64.2)
(j) →6)-β-D-GlcpN	100.65	56.87	76.12	71.53	73.91	63.15		
$(\mathbf{k}) \rightarrow 6$)GlcNol	60.40	56.53	67.55	71.52	70.52	64.22		

^a Data in parentheses were obtained from the corresponding monosaccharides (23, 32, 33).

pyranoside linked to O-5 of KDO (19). The cross-peak of H-1 (f) to H-3 (e) indicated the linkage of residue f to O-3 of Dglycero-D-manno-heptopyranosyl residue e. The cross-peaks from H-1 (f) to H-5 (g) and H-1 (g) to H-2 (f) indicated that residue g is linked to O-2 of residue f (20). The observed ^{13}C NMR chemical shift values of the C-1 signals 175.33 ppm (i), 174.870 ppm (h), and ¹H NMR data were consistent with the fact that both KDO residues have the α -configuration (21, 22). The HMQC-TOCSY spectrum of 3 indicated that C-4 and C-5 of one of the KDO residues (h) experienced significant deshielding (71.16 and 74.2 ppm, respectively) (Table III), showing that this residue is linked at both O-4 and O-5. These and the ¹H NMR results are in accordance with those published for a similarly linked KDO residue (23). That the other KDO residue (i) was terminal was ascertained by the similarity of its ¹³C and ¹H NMR chemical shifts (Tables II and III) with those previously reported for the pyranose form of unsubstituted 3-deoxy-D-manno-octulosonate (22, 24). Thus, it can be concluded that the KDO region of N. meningitidis L3 LPS consists of two KDO residues. One residue (i) is terminal, and the second residue (h), which is substituted by heptose (e) to O-5 and by KDO (i) to O-4, forms the link between the core oligosaccharide to the lipid A backbone. The ¹³C NMR chemical shifts of residues **j** and **k** were in accordance with those previously published for 6-O-substituted β pyranosidic glucosamine and 6-O-substituted glucosaminitol

FIG. 3. Cross-sections from a two-dimensional NOE spectrum of oligosaccharide 3 showing the NOEs for the anomeric protons of residues a-g and j. The mixing time was set to 600 ms, and the spectrum was measured at 295K in D_2O (δ 4.81 ppm, HOD).

(25). This data also indicates that the core is bound to the primary hydroxyl group (O-6) of the β -D-(1 \rightarrow 6)-linked glucosamine disaccharide of the lipid A backbone (18).

Residues **a**, **b**, and **c** were not present in oligosaccharides **4** (Tables II and III). Deletion of these residues was not accomplished either following acetic acid treatment (preparation of oligosaccharide **1**) or after strong hydrazinolysis of the de-Oacylated LPS used in the preparation of oligosaccharide **5** (see below); therefore, these residues must have been lost during the dephosphorylation of LPS-OH using aqueous HF. Selective one-dimensional TOCSY experiments were used in order to assign chemical shifts for the protons of residues **e**, **f**, **g** and KDO residues **h** and **i** (Fig. 4). To assign H6h and H6i the one-dimensional relayed TOCSY experiment was employed (Fig. 4, f and g).

For determination of the sialic acid location, the de-Oacylated LPS (LPS-OH) was reduced and de-N-acylated. Gel filtration on Bio-Gel P2 yielded one major oligosaccharide, which, after re-N-acetylation, gave a signal of chemical shift σ 2.819 ppm in its ¹H NMR spectrum. This signal is characteristic for H-3eq of sialic acid indicating its presence in this oligosaccharide. Assignment of chemical shifts in **5** was done by two-dimensional TOCSY and COSY experiments. The results are shown in Table IV and indicate deshielding of H-3 of α -D-galactose (residue **a**) from σ 3.68 ppm in **1** to δ 4.14 ppm in **5**, indicating 2,3-sialylation of terminal galactose (**a**).

Т	ABLE	IV
- 1	ADLD.	- L

Comparison of ¹H NMR chemical shift data obtained from the sialylated N. meningitidis serotype L3 LPS **5**, acetic acid released core oligosaccharide **1**, and synthetic oligosaccharide α -D-NeuAc(2 \rightarrow 3) β -D-Galp(1 \rightarrow 4) β -D-GlepNAc-OCH₃ **6**

		Chemical shifts ^e				
Sugar unit	Proton	5	1	6		
α -D-NeuAc(2 \rightarrow	3ax	1.83		1.79		
	3eq	2.82		2.75		
\rightarrow 3) β -p-Galp(1 \rightarrow	1	4.57	4.52	4.54		
(a)	2	3.63	3.59	3.56		
	3	4.14	3.70	4.11		
	4	4.02	3.98	4.00		
$\rightarrow 4$) β -D-GlcpNAc(1 \rightarrow	1	4.79	4.81	4.45		
(b)	2	3.83	3.82	3.73		
	3	3.78	3.78			
	4	3.75	3.75			

^a Obtained from Ref. 27.

FIG. 4. Proton spectrum (trace a), one-dimensional TOCSY (traces band one-dimensional relayed e). TOCSY (traces f and g) spectra of 4 after selective irradiation of H-1 (f) (trace b) H-1(e,g) (trace c), H-3ax (h) (trace d), H-3ax(i) (trace e), H-3ax(h) (trace f), and H-3ax(i) (trace g), respectively. A half-Gaussian pulse was used in all experiments; spin-lock time was 270 ms (traces b and c) and 110 ms (traces d-g), respectively. Final spinecho periods of one-dimensional relayed TOCSY experiments (traces f and g) were set to 120 ms.

FIG. 5. Structure of the native sialylated L3 LPS of N. meningitidis.

Large deshielding of aglyconic hydrogen (H-3 of terminal galactose a) is characteristic for 2,3-sialosides (26). Chemical shifts for H-3ax (σ 1.784 ppm, $J_{3ax,3eq} = 12.2$ Hz) and H3eq (σ 2.78 ppm, $J_{3eq,4} = 4.3$ Hz) were similar to the data found in synthetic 2,3-sialosides (27). From this result it can be deduced that sialic acid is 2,3-linked to terminal galactose in meningococcal L3 LPS.

Using the above structural data, a complete structure (7)of the sialylated meningococcal L3 LPS could be proposed (shown in Fig. 5). It was also possible to include the lipid A portion in 7 because the meningococcal lipid A structure was recently elucidated by Kulshin et al. (18). We have demonstrated that sialylation of the L3 LPS occurs at O-3 of the terminal galactopyranosyl residue of its lacto-N-neotetraose antenna. Lacto-N-neotetraose has also been identified in the L2 (9), L4², L5 (7), L7², and L8² immunotypes, and evidence that all these LPS can be sialylated has been reported (9) on the basis of SDS-gel electrophoresis studies. Lacto-N-neotetraose is also found in a variety of glycoproteins and glycolipids associated with human tissue (28, 29); because of this, it is possible to hypothesize that structural mimicry could be a virulence factor for meningococci. Interestingly this mimicry with human tissue is also perpetuated even after the addition of the $\alpha(2-3)$ -linked-sialic acid residue to the lacto-N-neotetraose antenna, because it then constitutes a structure manifested by the S1 and S3 glycolipids of human granulocytes (30). Because many of the meningococcal LPS immunotypes contain the above structures, the ability to immunotype then must be due to structural differences in their inner cores (31). One important structural feature that has been identified in

² H. J. Jennings and F. Michon, unpublished observations.

immunotype designation is the presence or absence of phosphorylethanolamine substituents and on differing locations of this substituent when it is present (8, 31). We have now determined that the L3 immunotype is based on the location of phosphorylethanolamine at O-3 of the heptose penultimate to the terminal 2-acetamido-2-deoxy- α -D-glucopyranosyl residue (Fig. 5).

Acknowledgment-We thank Fred Cooper for the GLC-MS analvses

REFERENCES

- Mandrell, R. E., and Zollinger, W. D. (1977) Infect. Immun. 16, 471-475
 Zollinger, W. D., and Mandrell, R. E. (1977) Infect. Immun. 18, 424-433
 Zollinger, W. D., and Mandrell, R. E. (1980) Infect. Immun. 28, 451-458
 Jennings, H. J., Lugowski, C., and Ashton, F. E. (1984) Infect. Immun. 43, 407-412
- 5. Jennings, H. J., Johnson, K. G., and Kenne, L. (1983) Carbohydr. Res. 121, 233-241

- Jennings, H. J., Jonnson, K. G., and Kenne, L. (1983) Caroonyar. Res. 121, 233-241
 DiFabio, J. L., Michon, F., Brisson, J.-R., and Jennings, H. J. (1990) Can. J. Chem. 68, 1029-1034
 Michon, F., Beurret, M., Gamian, A., Brisson, J.-R., and Jennings, H. J. (1990) J. Biol. Chem. 265, 7243-7247
 Gamian, A., Beurret, M., Michon, F., Brisson, J.-R., and Jennings, H. J. (1992) J. Biol. Chem. 267, 922-925
 Tsai, C.-M., and Civin, C. I. (1991) Infect. Immun. 59, 3604-3609
 Mandrell, R. E., Kim, J. J., John, C. M., Gibson, B. W., Sugai, J. V., Apicella, M. A., Griffiss, J. M., and Yamasaki, R. (1991) J. Bacteriol. 173, 2823-2832
 Gu X.-X., and Tsai, C.-M. (1992) Anal. Biochem. 196, 311-318
 Baumann, H., Tzianabos, A. O., Brisson, J.-R., Kasper, D. L., and Jennings, H. J. (1992) Biochemistry 31, 4081-4089
 Lerner, L., and Bax, A. (1986) J. Magn. Reson. 69, 378-380
 Kessler, H., Anders, V., Gemmecker, G., and Steuernagel, S. (1989) J. Magn. Reson. 85, 1-14
 Inagari, F., Shimada, I., Kohda, D., Suzuki, A., and Bax, A. (1989) J. Magn. Reson. 81, 186-190
 Holst, O., Brade, L., Kosma, P., and Brade, H. J. (1991) J. Bacteriol. 173, 1862-1866

- 1862-1866
- Kamerling, J. P., Gerwig, G. J., Vliegenthart, J. F. G., and Clamp, J. R. (1975) Biochem. J. 151, 491-495
 Kulshin, V. A., Zähringer, U., Lindner, B., Frasch, C. E., Tsai, C.-M.,

- Dmitriev, B. A., and Rietschel, E. T. (1992) J. Bacteriol. 174, 1793-1800
 19. Altman, E., Brisson, J.-R., and Perry, M. B. (1987) Eur. J. Biochem. 170, 185-192

- DiFabio, J. L., Brisson, J.-R., and Perry, M. B. (1989) Biochem. Cell Biol. 67, 78-85
 Bhattacharjee, A. K., Jennings, H. J., and Kenny, C. P. (1978) Biochemistry
- 17, 645-651
- 17, 645-651
 22. Birnbaum, G. I., Roy, R., Brisson, J.-R., and Jennings, H. J. (1987) J. Carbohydr. Chem. 6, 17-39
 23. Altman, E., Brisson, J.-R., Gagne, S. M., and Perry, M. B. (1992) Eur. J. Biochem. 204, 225-230
 24. Kosma, P., Gass, J., Schulz, G., Christian, R., and Unger, F. M. (1987) Carbohydr. Res. 167, 39-54
 25. Krasikova, I. N., Gorbach, V. I., Isakov, V. V., Soloviva, T. F., and Ovodov,

- Y. S. (1982) Eur. J. Biochem. 126, 349-351
 26. Pozsgay, V., Gaudino, J., Paulson, J. C., and Jennings, H. J. (1991) Bioorg. & Med. Chem. Lett. 1, 391-394
 27. Sabesan, S., and Paulson, J. C. (1986) J. Am. Chem. Soc. 108, 2068-2080
 28. Hakomori, S. (1981) Semin. Hematol. 18, 39-62
 29. Feizi, T., and Childs, R. A. (1985) Trends Biochem. Sci. 10, 24-25
 30. Fukuda, M. N., Dell, A., Oates, J. E., Wu, P., Klock, J. C., and Fukuda, M. (1985) J. Biol. Chem. 260, 1067-1082
 31. Jennings, H. J., Beurret, M., Gamian, A., and Michon, F. (1987) Antonie Leeuwenhoek J. Microbiol. 53, 519-522
 32. Jansson, P.-E., Kenne, L., and Widalm, G. (1989) Carbohydr. Res. 188, 169-192
 33. Knirel, Y. A., Tanatar, N. V., Soldatkina, M. A., Shashkov, A. S., and
- Knirel, Y. A., Tanatar, N. V., Soldatkina, M. A., Shashkov, A. S., and Zakharova, I. Y. (1988) *Bioorg. Khim.* 14, 77-81