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BRIEF DEFINITIVE REPORT

    Age-related macular degeneration (AMD) is the 
major cause of irreversible blindness in the el-
derly population of the developed world ( 1 ). 
The disease is characterized by loss of central 
 vision, which is caused by progressive deteriora-
tion of the macula, with symptoms presenting in 
old age. A signifi cant risk factor for development 
of the disease has recently been demonstrated to 
be a common allelic variant of complement fac-
tor H (FH) ( 2 – 5 ), resulting in a tyrosine/histi-
dine polymorphism at position 402 (384 in the 
mature protein) ( 6 ). Individuals heterozygous 
for the His-form are 2.7-fold more likely to de-
velop AMD (50% of the attributable risk factors) 
( 4 ), whereas risk of AMD increases by  > 7.4-fold 
for His402 homozygotes ( 2 ). The physiological 
role of FH, which consists of 20 short consensus 
repeat (SCR) or complement control protein 
(CCP) modules ( 7 ), is to regulate complement 
by accelerating the decay of the alternative path-
way C3 convertase and by acting as a cofactor 

for factor I – mediated proteolysis of C3b ( 8 – 10 ). 
It is capable of complement regulation in both 
the fl uid phase and on the surface of cells, where 
it is localized via binding to cell surface poly-
anions ( 11 ), such as sialic acid and glycosamino-
glycan (GAG) chains of proteoglycans. Specifi c 
polyanion binding has been defi nitively mapped 
to SCR20 at the C terminus of FH ( 12 ), and 
also to SCR7 ( 13 ), which contains the poly-
morphic residue 402. Sites in other SCRs have 
been proposed, but no fi nal consensus has been 
reached on their possible physiological relevance 
( 14, 15 ). In addition, FH has been shown to 
bind C-reactive protein (CRP), also via SCR7, 
thereby contributing to noninfl ammatory phago-
cytosis of damaged tissue ( 16 ). 

 The late onset of AMD implies that any al-
terations in natural function caused by the poly-
morphism are likely to be subtle, and may be 
linked to age-related alterations of retinal GAG 
composition ( 17, 18 ). It has been observed that 
the relative affi  nities of the two polymorphs for 
subtly diff erent ligands vary greatly ( 18 – 21 ). 
Collectively, the current data imply that the FH 
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 Nearly 50 million people worldwide suffer from age-related macular degeneration (AMD), 

which causes severe loss of central vision. A single-nucleotide polymorphism in the gene for 

the complement regulator factor H (FH), which causes a Tyr-to-His substitution at position 

402, is linked to  � 50% of attributable risks for AMD. We present the crystal structure of 

the region of FH containing the polymorphic amino acid His402 in complex with an ana-

logue of the glycosaminoglycans (GAGs) that localize the complement regulator on the cell 

surface. The structure demonstrates direct coordination of ligand by the disease-associated 

polymorphic residue, providing a molecular explanation of the genetic observation. This 

glycan-binding site occupies the center of an extended interaction groove on the regula-

tor ’ s surface, implying multivalent binding of sulfated GAGs. This fi nding is confi rmed by 

structure-based site-directed mutagenesis, nuclear magnetic resonance – monitored binding 

experiments performed for both H402 and Y402 variants with this and another model GAG, 

and analysis of an extended GAG – FH complex. 
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structure of FH678 402H , provide an excellent basis upon which 
to reliably model the structure of the FH678 402Y  structure, 
which could not be crystallized. 

 Direct role for AMD-related polymorphic residue 

in glycan binding 

 The crystals of FH678 402H  contain SOS bound to several 
 distinct sites spanning multiple SCRs ( Fig. 1 ). Signifi cantly, 

Tyr402His polymorphism alters the precise specifi city and af-
fi nity of its interaction with GAGs and CRP on the cell surface, 
leading to altered levels of FH retention on the retinal/macu-
lar surface, and thereby aff ecting complement activity in the 
area. NMR structures of SCR7s from both polymorphs ( 19 ) 
have demonstrated that their structures are identical, including 
the orientation of the altered sidechain. To gain insight into 
the functional consequences of the Y402H polymorphism, we 
have determined the crystal structure at 2.35  Å  of the H402 
variant of a three-domain region of FH surrounding the site 
of AMD-associated polymorphism (FH SCR6 – 8; here after 
termed FH-678 402H ) in complex with sucrose octasulfate 
(SOS), which is a highly sulfated sugar analogue of GAGs. 
To validate the SOS interactions to more physiologically rel-
evant GAG interactions, we have performed NMR-monitored 
titrations using His402 and Tyr402 versions of various FH 
constructs, and of both SOS and a highly sulfated heparin 
tetrasaccharide. These experiments (Fig. S1, available at http://
www.jem.org/cgi/content/full/jem.20071069/DC1) dem-
onstrate that both of these sulfated analogues of natural GAGs 
have identical binding modes and validate our selection of 
SOS for the crystallographic studies of FH – GAG binding. 

  RESULTS AND DISCUSSION  

 Crystallographic structure of FH modules 6 – 8 in complex 

with SOS 

 The inherently fl exible nature of the 20-module-long FH 
renders it a diffi  cult target for atomic resolution structure de-
termination. Therefore, we designed constructs containing 
the disease-implicated SCR7 fl anked on either side by a sin-
gle SCR module (SCR6 and 8). Both histidine and tyrosine 
polymorphs were characterized for their diff erent GAG inter-
action characteristics ( 18 ), and both were shown to exhibit 
subtly diff erent GAG-binding specifi cities (Fig S2, available at 
http://www.jem.org/cgi/content/full/jem.20071069/DC1) 
( 18 ). Crystallization trials with both variants with and with-
out a sugar ligand (SOS) were performed ( 22 ); however, only 
the combination of the His402 construct with a 10-fold 
 molar excess of SOS yielded crystals. NMR was used to check 
that another model GAG (a highly sulfated heparin-derived 
tetrasaccharide) binds in a similar way to SOS. The structure 
was solved using a combination of molecular replacement 
(with the NMR structure for SCR7 [reference  19 ]) and ex-
perimental phases (see Materials and methods and Supple-
mental materials and methods). The FH678 402H  structure 
( Fig. 1 A  and  Table I ) adopts an extended, but slightly curved, 
conformation, with a tight interface between SCR6 and 7, 
and weaker interactions between SCR7 and 8.   SOS is seen to 
mediate the vast majority of crystal contacts, explaining the 
observation that crystallization only occurred in the presence 
of SOS ( 22 ). The NMR and crystal structures of FH7 402H  are 
identical, showing that the His402 sidechain adopts the same 
conformation in the absence or presence of SOS. The Tyr402 
sidechain in the NMR structure of FH7 402H , also adopted 
this conformation. These observations strongly imply that 
the NMR structure of FH7 402H , together with the crystal 

 Figure 1.   The structure of FH modules 6 – 8 reveals multiple sul-

fated sugar-binding sites. (A) The overall structure of FH678 402H  is 

shown in cartoon representation colored from blue at the N terminus 

(residue 320) to red at the C terminus (residue 506). Electron density for 

the bound SOS is presented as an F O  – F C  map contoured at 2  � , which was 

generated before any modeling of the sugar was attempted. All fi gures 

were generated using PyMOL ( 25 ). SOS-binding sites are labeled (i – iv) and 

enlarged views are shown below the main panel. SOS is represented as a 

ball and stick colored by atom type (C, green; O, red; N, blue; S, yellow). 

Amino acid sidechains that contact the sugar are shown in stick represen-

tation, whereas the rest of the protein molecule is shown as a ribbon. 

Intermolecular hydrogen bonds are shown as dashed orange lines. 

The polymorphic residue associated with AMD (His402) is highlighted. 

(B) Model illustrating the proposed ability of the Tyr/His polymorphism at 

position 402 to differentially bind sulfated sugars. Position of Tyr402 was 

taken from the NMR structure of FH7 402Y  (Protein Data Bank ID, 2JGX).   
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sugar sulfates at this site ( Fig. 1 A  and Supplemental materials 
and methods). These sulfates contact the Arg404 and Lys410 
sidechains, which were previously implicated in heparin 
binding by mutagenesis ( 16, 18 ), and they are also consistent 
with the NMR chemical shift perturbation studies of isolated 
FH7 ( Fig. 2 ) ( 19 ).  

 Defi nition of a novel glycan-binding site in SCR6 

and additional sites across SCR7 and 8 

 Unexpectedly, in addition to the involvement of H360 from 
SCR6 in the major SCR7-centered binding site, the struc-
ture reveals a previously undescribed GAG-binding site con-
tained entirely within SCR6. This third site is chemically 
similar to that seen in SCR7, with a central positively charged 
residue (Arg341) fl anked by two histidine sidechains (His337 
and His371) that directly coordinate two ligand sulfate groups 
( Fig. 1  and Fig. S1). Analysis of the SOS surface area buried 
within the two major binding sites in SCR6 and 7, using the 
program MSDpisa ( 23 ), demonstrates that they have similarly 
sized ligand interfaces (253 and 217  Å  2 , respectively). Finally, 
a fourth SOS-binding site in the crystal was observed in the 
linker between SCR7 and 8; it involves a salt bridge between 
an SOS sulfate and Arg444. 

 Mutagenesis and chemical shift perturbations support 

the hypothesis of extended GAG interactions across 

the surface of SCR6 – 8 

 Previous work has mapped GAG-binding sites on FH to sin-
gle modules that are spread over the length of FH. In addi-
tion to SCR7 ( 13 ), the C-terminal module (SCR20) ( 12 ) 

the AMD-associated His402 residue in SCR7 is directly 
hydrogen bonded to a sulfate group of the ligand; His402 
and His360 from SCR6 form a histidine clamp around SOS 
sulfate groups ( Fig. 1 A  and Fig. S3, available at http://www
.jem.org/cgi/content/full/jem.20071069/DC1). The mode 
of sulfate recognition observed for this ligand is incompatible 
with the presence of a tyrosine sidechain at position 402, as 
observed in the previously solved three-dimensional struc-
ture of the isolated FH7 402Y  ( Fig. 1 B ). This explains the key 
earlier observations that the His402 and Tyr402 FH variants 
have altered affi  nities and specifi cities for diff erently sulfated 
GAGs ( 18, 19, 21 ). The rest of this binding site is dominated 
by hydrogen bonds and Van der Waals contacts with the 
backbone, with an additional contribution from the more 
distant positively charged Lys405 (which has been previously 
implicated in heparin binding by mutagenesis [references  
16 and 18 ]). Signifi cantly, the SOS at this site is present in 
major and minor conformations in the native protein crystals, 
related by a rotation of the sulfated fructose ring (Fig. S4 and 
Supplemental materials and methods). This conformational 
diff erence in SOS is accompanied by reorganization of the 
sidechain of Tyr390 that accommodates one of the reposi-
tioned sulfate groups. In the ligand-free form of FH7, only 
the minor conformation of the tyrosine sidechain is observed 
(NMR structure of isolated FH7 [reference  19 ]). A role for 
Tyr390 in binding heparin is consistent with NMR chemical 
shift perturbation studies on SCR7 studied in isolation from 
SCR6 and 8 ( 19 ). A secondary SOS-binding site is observed 
on the opposite face of SCR7. However, ambiguous electron 
density at this site only allowed modeling of the coordinated 

  Table I.    Refi nement statistics and model quality 

Crystal Native SeMet 1

Wavelength ( Å ) 0.978 0.979

Space group (Z) C222 1  ( 8 ) C222 1  ( 8 )

Cell parameters ( Å ) a � 74.7 

 b � 92.5 

 c � 57.3

a � 75.0 

 b � 92.5 

 c � 57.1

Resolution range ( Å ) 15.0 – 2.35 (2.42 – 2.35) 15.0 – 2.50 (2.57 – 2.50)

Unique refl ections 8,366 7,044

R work  (%) 0.214 (0.230) 0.217 (0.215)

R free  (%) 0.246 (0.280) 0.259 (0.266)

Rmsd bond lengths ( Å ) 0.013 0.017

Rmsd bond angles ( ° ) 1.26 1.14

Residues modelled 320 – 506 320 – 506

Waters modeled 133 81

Mean B (A 2 ) protein 

 SOS 

 Waters

37.8 

 85.7 

 56.2

40.8 

 80.9 

 51.3

Nonprotein molecules 2 SOS  a   

 2 Chloride 

 3 Sulfate 

 1 Acetate

1 SOS  a   

 2 Chloride 

 3 Sulfate

  a  Crystallographically, there is a single SOS-binding site, but the single site mediates contacts to multiple copies of FH678 402H  and is fi lled by two partially occupied molecules 

in subtly different conformations in the Native crystal form.
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(Arg387, Lys388, and Lys405) previously implicated in poly-
anion recognition by mutagenesis ( 16, 18 ) also line this groove. 
Thus, we hypothesize that rather than binding to discrete 
modules of FH as previously supposed, a GAG molecule on 
the cell surface can span multiple neighboring modules within 
the protein. To test this model, and to show that GAG bind-
ing is not entirely SCR7 dependent, we performed NMR 
chemical shift perturbation studies. By titrating either SOS 
or a highly sulfated heparin tetrasaccharide into  15 N-labeled 

and SCR9 and 13 have been implicated in this respect ( 15, 24 ). 
The electrostatic potential computed from our crystal struc-
ture shows that the three GAG-analogue binding sites for 
which full density could be observed occupy a positively 
charged groove extending over all three modules of FH678 402H  
( Fig. 2 A  and Fig. S5, available at http://www.jem.org/cgi/
content/full/jem.20071069/DC1). In addition to the AMD-
related polymorphism, which lies at the center of the major 
binding site in SCR7 within this channel, other residues 

 Figure 2.   Characterization of GAG-binding sites. (A) Electrostatic surface potential (plotted at  �  5 kT/e) of FH678 402H  reveals a positively charged 

groove that extends between the three major SOS-binding sites. The residues lining the groove that have previously associated with polyanion binding, 

Arg387, Lys388, and Lys405 ( 16, 18 ), are highlighted in blue. The polymorphic residue associated with AMD (His402) is highlighted in red ( 2 – 5 ). (B;   1 H,  15 N) 

HSQC spectrum for free FH78 402Y  (50  � M; black) and in the presence of SOS. Protein/ligand ratios are 1:0.6 (red), 1:1.2 (orange), 1:2.5 (green), 1:5 (blue), 

and 1:10 (purple). The y axis corresponds to  15 N chemical shifts, and the x axis corresponds to  1 H chemical shifts, both in parts per million. Conditions 

were 20 mM potassium phosphate, pH 7.4, 298 K. (C) Chemical shift perturbations mapped on the surface of FH678 402H . SCR6 is shown in dark gray, as 

it was not present in the constructs used for these experiments. The sidechains of residues that exhibit the largest combined  15 N and  1 H chemical shift 

perturbations are highlighted in pink (FH7) and purple (FH78). The data presented in B and C are also shown in Fig. S4 with the molecule rotated in other 

views. Fig. S4 is available at http://www.jem.org/cgi/content/full/jem.20071069/DC1.   
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the pH dependency of the deletion constructs. FH56 and 
FH67 402H  bind with a higher affi  nity at a more acidic pH, 
presumably caused by increasing protonation of the His resi-
dues that dominate the binding sites in SCR6 and 7. Binding 
of FH78 402H  on the other hand, is not pH-dependent in the 
physiological range, confi rming the dominance of Arg/Lys 
residues in the binding site at the SCR7 – 8 linker. To further 
probe the novel GAG-binding site in SCR6, point mutations 
were made in the FH67 402H  construct, and heparin-binding 
was assessed ( Fig. 3 B ).  Mutation of either His337 or Arg341 
to Ala reduces the affi  nity of FH67 402H  for heparin relative 
to the native FH67 402H , proving a role for these residues in 
GAG binding. 

 Implications for natural function and the disease state 

 The crystal structure and supporting characterization we pre-
sent in this study formally demonstrate the presence of multi-
ple GAG-binding sites in FH SCR6 – 8, which is consistent 
with a single bound GAG molecule spanning all three mod-
ules (Fig. S5). As a further test of this hypothesis, we have 
also performed an analytical ultracentrifugation analysis of a 
mixture of extended heparins (dp18 or dp24, selected to be 
long enough to bridge between the SCR6 and 8 binding 
sites) and FH678. This analysis (Fig. S7 and Table S1, available at 
http://www.jem.org/cgi/content/full/jem.20071069/DC1) 
reveals that the complex formed, with both variants, has a 
stoichiometry of 1 FH678:1 heparin molecule, as predicted 

FH78 (in either allelic form), large chemical shift perturba-
tions were observed for residues 443 – 447 in the SCR7 – 8 
linker ( Fig. 2, B and C,  and Fig. S1). This binding site in-
cludes the Arg444 seen to contact SOS in the crystal struc-
ture ( Fig. 1 A ). Interestingly, chemical shift perturbations 
corresponding to the secondary SOS-binding site in SCR7 
(Arg404/Lys410), which was observed in NMR studies of 
SCR7 alone ( 19 ), are no longer observed in the context of 
FH78, suggesting that the FH78 linker site outcompetes the 
Arg404/Lys410 site. No appreciable chemical shift perturba-
tions were detected for His402, implying the major SCR7-
binding site observed in the crystal is not occupied in the 
absence of the contribution of His360 from SCR6. 

 To further validate the multiple GAG-binding sites, we gen-
erated three domain-deletion FH constructs (FH56, FH67 402H , 
and FH78 402H ) and mutated residues within the newly iden-
tifi ed SCR6 GAG-binding site. GAG-binding was assayed 
using heparin-affi  nity chromatography ( Fig. 3, A and B,  and 
Fig. S6, available at http://www.jem.org/cgi/content/full/
jem.20071069/DC1). FH56, which completely lacks the 
previously defi ned GAG-binding site in SCR7, specifi cally 
binds to a heparin-affi  nity column, demonstrating binding by 
the SCR6 site in the absence of the SCR7-centered site. The 
presence of SCR8 greatly increases the affi  nity of the FH 
constructs for heparin, which is in agreement with the NMR 
studies. The contributions made by the various binding sites 
to heparin binding are further demonstrated by analysis of 

 Figure 3.   Proposed model for FH interactions with sulfate-rich domains of GAGs on the cell surface. (A) Analysis of binding of different frag-

ments of FH 402H  to a heparin-HiTrap column confi rms the binding site in SCR6 and reveals pH dependency of binding by SCR6 and 7. This supports the 

involvement of histidine sidechains in glycan coordination, as revealed by the structure. (B) Mutation of sidechains seen to coordinate SOS in SCR6 alter 

the affi nity of FH67 402H  for a heparin-HiTrap column. (C and D) Model for simultaneous FH binding to C3b (light blue spheres; PDB code, 2I07 [reference  26 ]) 

and GAGs (red/green spheres; PDB code, 1HPN [reference  27 ]) on the retinal epithelium. FH modules for which structural data is available are represented 

as cartoons and semitransparent surfaces: SCR5 ( 28 ), SCR6 – 8 (PDB code 2UWN; this study), SCR15/16 (Protein Data Bank ID, 1HFH [reference  29 ]), 

SCR19/20 (PDB code 2G7I/2BZM [references  30, 31 ]). Mutational data (dark blue spheres; for review see [reference  32 ]) mapped onto the structure of C3b 

suggest FH coils around C3b like a snake.   
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Healthcare). The purifi ed FH fragments were dialyzed into loading buff er 

(buff er A) before being injected onto the preequilibrated column. After 

washing to remove any unbound sample, a gradient of buff er B, ranging 

from 0 – 100% over 20 column volumes, was started. The buff ers used are 

described in the Supplemental materials and methods. The point of protein 

elution is read as the conductivity at which the UV absorbance shows pro-

tein elution to be at a maximum. Each experiment was repeated a minimum 

of fi ve times. 

 Chemical shift perturbation experiments.   FH78 was expressed and 

 purifi ed as previously described ( 19 ). NMR spectra were acquired on an 

AVANCE 600-MHz spectrometer (Bruker) using 5-mm probes. Data for 

backbone assignment of FH78 were acquired at 310 K on a 0.8-mM sample 

of  13 C,  15 N – labeled protein in 20 mM sodium acetate, pH 5.2. Subsequent 

transfer of the backbone NH assignment to the SOS titration conditions 

(50  � M protein, 298 K, and 20 mM potassium phosphate, pH 7.4) was 

achieved with the help of pH and temperature titrations. 

 Analytical ultracentrifugation.   Sedimentation equilibrium experiments 

to determine the molecular mass of FH678 (both variants) in the presence 

and absence of a twofold excess of either dp18 or dp26 heparin were per-

formed as described in the Supplemental materials and methods. 

 Online supplemental material.   Fig. S1 shows a NMR titration histo-

gram. Fig. S2 shows a comparison of the binding of histidine and tyrosine 

FH variants to diff erently sulfated heparin preparations. Fig. S3 shows an 

analysis of the major binding sites in SCR6 and SCR7. Fig. S4 shows the 

eff ects of ligand binding on Tyr390. Fig. S5 shows the mapping of major 

features onto the surface of FH-678 402H . Fig. S6 is an example of an elution 

profi le from heparin column. Fig. S7 is an AUC experiment. Table S1 lists 

the molecular weight estimates from sedimentation equilibrium experiments 

in the presence or absence of heparin dp18 or dp26. A Supplemental materials 

and methods is also provided. The online version of this article is available 

at http://www.jem.org/cgi/content/full/jem.20071069/DC1. 
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by our hypothesis of extended interactions with long GAGs. 
Therefore, we propose a model by which GAG binding to all 
three modules acts in tandem with binding to SCR20 to lo-
calize FH to surface and simultaneously grasp C3b in a pincer 
grip, accelerating the decay of the C3 convertase assembly 
and promoting recruitment of factor I ( Fig. 3, C and D ). We 
also demonstrate that the polymorphic AMD-associated resi-
due is directly involved in this binding. Switching between 
histidine and tyrosine at position 402 of FH will alter the 
mode of GAG binding by changing the specifi city for partic-
ular sulfation patterns ( Fig. 1 B ), as previously observed ex-
perimentally ( 18 ). This ability of FH to register the presence 
or absence of a single, specifi c sulfate group within the con-
text of a longer GAG is shown to be dependent on which 
amino acid residue occupies position 402. Such a subtle eff ect 
of the SCR 7 polymorphism is entirely consistent with the 
obvious fact that either allotype functions adequately in the 
majority of tissue contexts, and even in the macula until old 
age. In combination with age-related alterations of retinal 
GAG composition ( 17 ), diff erences in tissue localization and 
retention of the polymorphic forms of FH would become 
signifi cant in the retina over the decades taken for AMD 
to develop. 

  MATERIALS AND METHODS  
 Structure determination.   Crystallization trials with both allelic forms, 

with and without sugar ligand (SOS) were performed as previously described 

( 22 ); however, only the combination of the H402 construct with a 10-fold 

excess of SOS yielded crystals. Having obtained crystals, the structure 

was solved using a combination of molecular replacement (with the NMR 

structure for SCR7 [reference  19 ]) and experimental phases from selenome-

thionine-labeled crystals and Br and Cl heavy atom soaks. Data and coordi-

nates have been deposited in the Protein Data Bank with identifi ers 2UWN 

and 2V8E. 

 Ligand fi tting.   SOS was autofi t into the major residual electron density in 

the native data, placing the glucose ring in density, followed by manual rota-

tion around the glycosidic bond to place the fructose ring in density. When 

repeated in the SeMet-1 density, the SOS was placed in an alternate confor-

mation. Refi nement of the occupancies of these alternate conformations led 

to a model for the native crystals containing SOS conformations 1 and 2 at a 

ratio of 0.35:0.4, whereas the SeMet-1 crystal only contains conformation 2 

(presumably a consequence of SeMet residues in the immediate vicinity 

of the SOS-binding site). A secondary SOS-binding site was identifi ed on 

another face of FH-678 402H  on a crystallographic twofold down the y axis. 

Attempts to fi t an asymmetric SOS into the symmetric residual density were 

not satisfactory; therefore, only the major density residuals with a tetrahedral 

shape were modeled with sulfate molecules. 

 Generation of two-domain constructs and site-directed mutants.  

 The primers used are detailed in the Supplemental materials and methods. 

Two-domain constructs were amplifi ed and ligated into a pET-14b ex-

pression vector (Novagen), via a pDrive cloning vector (Qiagen). Mutations 

in the SCR6 heparin-binding site were generated in construct FH-67 using 

the QuikChange site-directed mutagenesis kit (Stratagene). All recombinant 

proteins were expressed in  Escherichia coli  BL21 (DE3; Novagen) and re-

folded from inclusion bodies, as previously described ( 22 ). 

 Heparin-binding assays.   The relative affi  nities of the FH fragments for 

heparin were assayed as the conductivity (milliSiemen/centimeter) required 

to elute the protein from a 1-ml HiTrap heparin affinity column (GE 



JEM VOL. 204, October 1, 2007 2283

BRIEF DEFINITIVE REPORT

    4 .  Edwards ,  A.O. ,  R.   Ritter   III ,  K.J.   Abel ,  A.   Manning ,  C.   Panhuysen , 
and  L.A.   Farrer .  2005 .  Complement factor H polymorphism and age-
related macular degeneration.    Science  .  308 : 421  –  424 .  

    5 .  Hageman ,  G.S. ,  D.H.   Anderson ,  L.V.   Johnson ,  L.S.   Hancox ,  A.J.   Taiber , 
 L.I.   Hardisty ,  J.L.   Hageman ,  H.A.   Stockman ,  J.D.   Borchardt ,  K.M.  
 Gehrs ,  et al .  2005 .  A common haplotype in the complement regulatory 
gene factor H (HF1/CFH) predisposes individuals to age-related macular 
degeneration.    Proc. Natl. Acad. Sci. USA  .  102 : 7227  –  7232 .  

    6 .  Day ,  A.J. ,  A.C.   Willis ,  J.   Ripoche , and  R.B.   Sim .  1988 .  Sequence 
polymorphism of human complement factor H.    Immunogenetics  .  27 :
 211  –  214 .  

    7 .  Ripoche ,  J. ,  A.J.   Day ,  T.J.   Harris , and  R.B.   Sim .  1988 .  The com-
plete amino acid sequence of human complement factor H.    Biochem. J.   
 249 : 593  –  602 .  

    8 .  Kazatchkine ,  M.D. ,  D.T.   Fearon , and  K.F.   Austen .  1979 .  Human al-
ternative complement pathway: membrane-associated sialic acid regu-
lates the competition between B and beta1 H for cell-bound C3b.    
J. Immunol.    122 : 75  –  81 .  

    9 .  Weiler ,  J.M. ,  M.R.   Daha ,  K.F.   Austen , and  D.T.   Fearon .  1976 .  Control 
of the amplifi cation convertase of complement by the plasma protein 
beta1H.    Proc. Natl. Acad. Sci. USA  .  73 : 3268  –  3272 .  

    10 .  Whaley ,  K. , and  S.   Ruddy .  1976 .  Modulation of the alternative com-
plement pathways by  � 1H globulin.    J. Exp. Med.    144 : 1147  –  1163 .  

    11 .  Fearon ,  D.T.   1978 .  Regulation by membrane sialic acid of beta1H-
dependent decay-dissociation of amplifi cation C3 convertase of the alter-
native complement pathway.    Proc. Natl. Acad. Sci. USA  .  75 : 1971  –  1975 .  

    12 .  Blackmore ,  T.K. ,  J.   Hellwage ,  T.A.   Sadlon ,  N.   Higgs ,  P.F.   Zipfel , 
 H.M.   Ward , and  D.L.   Gordon .  1998 .  Identifi cation of the second 
heparin-binding domain in human complement factor H.    J. Immunol.   
 160 : 3342  –  3348 .  

    13 .  Blackmore ,  T.K. ,  T.A.   Sadlon ,  H.M.   Ward ,  D.M.   Lublin , and  D.L.  
 Gordon .  1996 .  Identifi cation of a heparin binding domain in the 
seventh short consensus repeat of complement factor H.    J. Immunol.   
 157 : 5422  –  5427 .  

    14 .  Pangburn ,  M.K. ,  M.A.   Atkinson , and  S.   Meri .  1991 .  Localization of 
the heparin-binding site on complement factor H.    J. Biol. Chem.    266 :
 16847  –  16853 .  

    15 .  Ormsby ,  R.J. ,  T.S.   Jokiranta ,  T.G.   Duthy ,  K.M.   Griggs ,  T.A.   Sadlon , 
 E.   Giannakis , and  D.L.   Gordon .  2006 .  Localization of the third  heparin-
binding site in the human complement regulator factor H1.    Mol. 
Immunol.    43 : 1624  –  1632 .  

    16 .  Giannakis ,  E. ,  T.S.   Jokiranta ,  D.A.   Male ,  S.   Ranganathan ,  R.J.   Ormsby , 
 V.A.   Fischetti ,  C.   Mold , and  D.L.   Gordon .  2003 .  A common site within 
factor H SCR 7 responsible for binding heparin, C-reactive protein and 
streptococcal M protein.    Eur. J. Immunol.    33 : 962  –  969 .  

    17 .  Verdugo ,  M.E. , and  J.   Ray .  1997 .  Age-related increase in activity of 
specifi c lysosomal enzymes in the human retinal pigment epithelium.  
  Exp. Eye Res.    65 : 231  –  240 .  

    18 .  Clark ,  S.J. ,  V.A.   Higman ,  B.   Mulloy ,  S.J.   Perkins ,  S.M.   Lea ,  R.B.   Sim , 
and  A.J.   Day .  2006 .  His-384 allotypic variant of factor H associated 
with age-related macular degeneration has diff erent heparin binding 

properties from the non-disease-associated form.    J. Biol. Chem.    281 :
 24713  –  24720 .  

    19 .  Herbert ,  A.P. ,  J.A.   Deakin ,  C.Q.   Schmidt ,  B.S.   Blaum ,  C.   Egan ,  V.P.  
 Ferreira ,  M.K.   Pangburn ,  M.   Lyon ,  D.   Uhrin , and  P.N.   Barlow .  2007 . 
 Structure shows glycosaminoglycan- and protein-recognition site in 
factor H is perturbed by age-related macular degeneration-linked SNP.  
  J. Biol. Chem.    282 : 18960  –  18968 .  

    20 .  Sjoberg ,  A.P. ,  L.A.   Trouw ,  S.J.   Clark ,  J.   Sjolander ,  D.   Heinegard ,  R.B.  
 Sim ,  A.J.   Day , and  A.M.   Blom .  2007 .  The factor H variant associated 
with age-related macular degeneration (His-384) and the non-disease-
associated form bind diff erentially to C-reactive protein, fi bromodulin, 
DNA, and necrotic cells.    J. Biol. Chem.    282 : 10894  –  10900 .  

    21 .  Skerka ,  C. ,  N.   Lauer ,  A.A.   Weinberger ,  C.N.   Keilhauer ,  J.   Suhnel ,  R.  
 Smith ,  U.   Schlotzer-Schrehardt ,  L.   Fritsche ,  S.   Heinen ,  A.   Hartmann , 
 et al .  2007 .  Defective complement control of Factor H (Y402H) and FHL-1 
in age-related macular degeneration.    Mol. Immunol.    44 : 3398  –  3406 .  

    22 .  Prosser ,  B.E. ,  S.   Johnson ,  P.   Roversi ,  S.J.   Clark ,  E.   Tarelli ,  R.B.   Sim ,  A.J.  
 Day , and  S.M.   Lea .  2007 .  Expression, purifi cation, cocrystallisation and 
preliminary crystallographic analysis of sucrose octasulfate/human com-
plement regulator factor H SCRs 6-8.    Acta Crystallogr.    F63 : 480  –  483 .  

    23 .  Krissinel ,  E. , and  K.   Henrick .  2005 . Detection of protein assemblies in 
crystals.  In  Lecture Notes in Computer Science. M.R. Berthold, editor. 
Springer, Berlin/Heidelberg. 163 – 174 pp.  

    24 .  Pangburn ,  M.K. ,  M.A.   Atkinson , and  S.   Meri .  1991 .  Localization of 
the heparin-binding site on complement factor H.    J. Biol. Chem.    266 :
 16847  –  16853 .  

    25 .  DeLano ,  W.L.   2002 . The PyMOL Molecular Graphics System.  http://www
.pymol.org   

    26 .  Janssen ,  B.J. , and  P.   Gros .  2006 .  Conformational complexity of comple-
ment component C3.    Adv. Exp. Med. Biol.    586 : 291  –  312 .  

    27 .  Mulloy ,  B. ,  M.J.   Forster ,  C.   Jones , and  D.B.   Davies .  1993 .  N.M.R., 
and molecular-modelling studies of the solution conformation of heparin.  
  Biochem. J.    293 : 849  –  858 .  

    28 .  Barlow ,  P.N. ,  D.G.   Norman ,  A.   Steinkasserer ,  T.J.   Horne ,  J.   Pearce , 
 P.C.   Driscoll ,  R.B.   Sim , and  I.D.   Campbell .  1992 .  Solution structure of 
the fi fth repeat of factor H: a second example of the complement con-
trol protein module.    Biochemistry  .  31 : 3626  –  3634 .  

    29 .  Barlow ,  P.N. ,  A.   Steinkasserer ,  D.G.   Norman ,  B.   Kieff er ,  A.P.   Wiles , 
 R.B.   Sim , and  I.D.   Campbell .  1993 .  Solution structure of a pair of 
complement modules by nuclear magnetic resonance.    J. Mol. Biol.   
 232 : 268  –  284 .  

    30 .  Herbert ,  A.P. ,  D.   Uhrin ,  M.   Lyon ,  M.K.   Pangburn , and  P.N.   Barlow . 
 2006 .  Disease-associated sequence variations congregate in a polyanion 
recognition patch on human factor H revealed in three-dimensional 
structure.    J. Biol. Chem.    281 : 16512  –  16520 .  

    31 .  Jokiranta ,  T.S. ,  V.-P.   Jaakola ,  M.J.   Lehtinen ,  M.   P ä repalo ,  S.   Meri , 
and  A.   Goldman .  2006 .  Structure of complement factor H carboxyl-
 terminus reveals molecular basis of atypical haemolytic uremic syndrome.  
  EMBO J  .  25 : 1784  –  1794 .  

    32 .  Janssen ,  B.J. , and  P.   Gros .  2007 .  Structural insights into the central com-
plement component C3.    Mol. Immunol.    44 : 3  –  10 .        


