1,018 research outputs found

    Sustainable Software Ecosystems: Software Engineers, Domain Scientists, and Engineers Collaborating for Science

    Full text link
    The development of scientific software is often a partnership between domain scientists and scientific software engineers. It is especially important to embrace these collaborations when developing advanced scientific software, where sustainability, reproducibility, and extensibility are important. In the ideal case, as discussed in this manuscript, this brings together teams composed of the world's foremost scientific experts in a given field with seasoned software developers experienced in forming highly collaborative teams working on software to further scientific research.Comment: 4 pages, submission for WSSSPE

    Building Near-Real-Time Processing Pipelines with the Spark-MPI Platform

    Full text link
    Advances in detectors and computational technologies provide new opportunities for applied research and the fundamental sciences. Concurrently, dramatic increases in the three Vs (Volume, Velocity, and Variety) of experimental data and the scale of computational tasks produced the demand for new real-time processing systems at experimental facilities. Recently, this demand was addressed by the Spark-MPI approach connecting the Spark data-intensive platform with the MPI high-performance framework. In contrast with existing data management and analytics systems, Spark introduced a new middleware based on resilient distributed datasets (RDDs), which decoupled various data sources from high-level processing algorithms. The RDD middleware significantly advanced the scope of data-intensive applications, spreading from SQL queries to machine learning to graph processing. Spark-MPI further extended the Spark ecosystem with the MPI applications using the Process Management Interface. The paper explores this integrated platform within the context of online ptychographic and tomographic reconstruction pipelines.Comment: New York Scientific Data Summit, August 6-9, 201

    Sustainable Software Ecosystems for Open Science

    Full text link
    Sustainable software ecosystems are difficult to build, and require concerted effort, community norms and collaborations. In science it is especially important to establish communities in which faculty, staff, students and open-source professionals work together and treat software as a first-class product of scientific investigation-just as mathematics is treated in the physical sciences. Kitware has a rich history of establishing collaborative projects in the science, engineering and medical research fields, and continues to work on improving that model as new technologies and approaches become available. This approach closely follows and is enhanced by the movement towards practicing open, reproducible research in the sciences where data, source code, methodology and approach are all available so that complex experiments can be independently reproduced and verified.Comment: Workshop on Sustainable Software: Practices and Experiences, 4 pages, 3 figure

    Report on the Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2)

    Get PDF
    This technical report records and discusses the Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2). The report includes a description of the alternative, experimental submission and review process, two workshop keynote presentations, a series of lightning talks, a discussion on sustainability, and five discussions from the topic areas of exploring sustainability; software development experiences; credit & incentives; reproducibility & reuse & sharing; and code testing & code review. For each topic, the report includes a list of tangible actions that were proposed and that would lead to potential change. The workshop recognized that reliance on scientific software is pervasive in all areas of world-leading research today. The workshop participants then proceeded to explore different perspectives on the concept of sustainability. Key enablers and barriers of sustainable scientific software were identified from their experiences. In addition, recommendations with new requirements such as software credit files and software prize frameworks were outlined for improving practices in sustainable software engineering. There was also broad consensus that formal training in software development or engineering was rare among the practitioners. Significant strides need to be made in building a sense of community via training in software and technical practices, on increasing their size and scope, and on better integrating them directly into graduate education programs. Finally, journals can define and publish policies to improve reproducibility, whereas reviewers can insist that authors provide sufficient information and access to data and software to allow them reproduce the results in the paper. Hence a list of criteria is compiled for journals to provide to reviewers so as to make it easier to review software submitted for publication as a “Software Paper.

    Vitamin D Status of Older Adults of Diverse Ancestry Living in the Greater Toronto Area

    Get PDF
    Background: Physiological and lifestyle factors put older adults at an increased risk of vitamin D insufficiency and resulting negative health outcomes. Here we explore the vitamin D status in a sample of community dwelling older adults of diverse ancestry living in the Greater Toronto area (GTA). Methods: Two hundred and twenty-four (224) adults over 60 years of age were recruited from the Square One Older Adult Centre, in Mississauga, Ontario. Circulating 25-hydroxyvitamin D (25(OH)D) concentrations were measured from dried blood spot cards. Dietary and supplemental intakes of vitamin D were assessed via questionnaires. Skin pigmentation was assessed quantitatively by measuring melanin levels using a reflectometer. Results: The mean 25(OH)D concentration in the total sample was 82.4 nmol/L. There were no statistically significant differences in serum 25(OH)D concentrations, supplemental or dietary vitamin D intakes between the three major ancestral groups (East Asians, Europeans and South Asians). Females had significantly higher 25(OH)D concentrations than males (84.5 nmol/L vs. 72.2 nmol/L, p = 0.012). The proportion of participants with 25(OH)D concentrations below 50 nmol/L and 75 nmol/L were 12.1%, and 38.8%, respectively. The mean daily supplemental intake of vitamin D was 917 IU/day. Vitamin D intake from supplements was the major factor determining 25(OH)D concentrations (p \u3c 0.001). Conclusions: Mean concentration of 25(OH)D in a sample of older adults of diverse ancestry living in the GTA exceeded 80 nmol/L, and there were no significant differences in 25(OH)D levels between ancestral groups. These results sharply contrast with our recent study focused on young adults of diverse ancestry living in the same geographic area, in which we found substantially lower 25(OH)D concentrations (mean 39.5 nmol/L), low supplemental vitamin D intake (114 IU/day), and significant differences in 25(OH)D levels between ancestral groups. High daily intake of supplemental vitamin D in this sample of older adults likely accounts for such disparate findings with respect to the young adult sample

    Summary of the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1)

    Get PDF
    Challenges related to development, deployment, and maintenance of reusable software for science are becoming a growing concern. Many scientists’ research increasingly depends on the quality and availability of software upon which their works are built. To highlight some of these issues and share experiences, the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1) was held in November 2013 in conjunction with the SC13 Conference. The workshop featured keynote presentations and a large number (54) of solicited extended abstracts that were grouped into three themes and presented via panels. A set of collaborative notes of the presentations and discussion was taken during the workshop. Unique perspectives were captured about issues such as comprehensive documentation, development and deployment practices, software licenses and career paths for developers. Attribution systems that account for evidence of software contribution and impact were also discussed. These include mechanisms such as Digital Object Identifiers, publication of “software papers”, and the use of online systems, for example source code repositories like GitHub. This paper summarizes the issues and shared experiences that were discussed, including cross-cutting issues and use cases. It joins a nascent literature seeking to understand what drives software work in science, and how it is impacted by the reward systems of science. These incentives can determine the extent to which developers are motivated to build software for the long-term, for the use of others, and whether to work collaboratively or separately. It also explores community building, leadership, and dynamics in relation to successful scientific software

    From data to analysis: linking NWChem and Avogadro with the syntax and semantics of Chemical Markup Language

    Get PDF
    Background: Multidisciplinary integrated research requires the ability to couple the diverse sets of data obtained from a range of complex experiments and computer simulations. Integrating data requires semantically rich information. In this paper an end-to-end use of semantically rich data in computational chemistry is demonstrated utilizing the Chemical Markup Language (CML) framework. Semantically rich data is generated by the NWChem computational chemistry software with the FoX library and utilized by the Avogadro molecular editor for analysis and visualization. Results: The NWChem computational chemistry software has been modified and coupled to the FoX library to write CML compliant XML data files. The FoX library was expanded to represent the lexical input files and molecular orbitals used by the computational chemistry software. Draft dictionary entries and a format for molecular orbitals within CML CompChem were developed. The Avogadro application was extended to read in CML data, and display molecular geometry and electronic structure in the GUI allowing for an end-to-end solution where Avogadro can create input structures, generate input files, NWChem can run the calculation and Avogadro can then read in and analyse the CML output produced. The developments outlined in this paper will be made available in future releases of NWChem, FoX, and Avogadro. Conclusions: The production of CML compliant XML files for computational chemistry software such as NWChem can be accomplished relatively easily using the FoX library. The CML data can be read in by a newly developed reader in Avogadro and analysed or visualized in various ways. A community-based effort is needed to further develop the CML CompChem convention and dictionary. This will enable the long-term goal of allowing a researcher to run simple "Google-style" searches of chemistry and physics and have the results of computational calculations returned in a comprehensible form alongside articles from the published literature

    The Quixote project: Collaborative and Open Quantum Chemistry data management in the Internet age.

    Get PDF
    Computational Quantum Chemistry has developed into a powerful, efficient, reliable and increasingly routine tool for exploring the structure and properties of small to medium sized molecules. Many thousands of calculations are performed every day, some offering results which approach experimental accuracy. However, in contrast to other disciplines, such as crystallography, or bioinformatics, where standard formats and well-known, unified databases exist, this QC data is generally destined to remain locally held in files which are not designed to be machine-readable. Only a very small subset of these results will become accessible to the wider community through publication.In this paper we describe how the Quixote Project is developing the infrastructure required to convert output from a number of different molecular quantum chemistry packages to a common semantically rich, machine-readable format and to build respositories of QC results. Such an infrastructure offers benefits at many levels. The standardised representation of the results will facilitate software interoperability, for example making it easier for analysis tools to take data from different QC packages, and will also help with archival and deposition of results. The repository infrastructure, which is lightweight and built using Open software components, can be implemented at individual researcher, project, organisation or community level, offering the exciting possibility that in future many of these QC results can be made publically available, to be searched and interpreted just as crystallography and bioinformatics results are today.Although we believe that quantum chemists will appreciate the contribution the Quixote infrastructure can make to the organisation and and exchange of their results, we anticipate that greater rewards will come from enabling their results to be consumed by a wider community. As the respositories grow they will become a valuable source of chemical data for use by other disciplines in both research and education.The Quixote project is unconventional in that the infrastructure is being implemented in advance of a full definition of the data model which will eventually underpin it. We believe that a working system which offers real value to researchers based on tools and shared, searchable repositories will encourage early participation from a broader community, including both producers and consumers of data. In the early stages, searching and indexing can be performed on the chemical subject of the calculations, and well defined calculation meta-data. The process of defining more specific quantum chemical definitions, adding them to dictionaries and extracting them consistently from the results of the various software packages can then proceed in an incremental manner, adding additional value at each stage.Not only will these results help to change the data management model in the field of Quantum Chemistry, but the methodology can be applied to other pressing problems related to data in computational and experimental science.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore